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Chapter 23 

foundational Issues 
in the contemporary modeling 
of longitudinal trajectories 

JoHn J.  Mc ardLE 

defining and describing trajectories over time 

Figure 23.1 is a plot of longitudinal data from one of my favorite studies—the growth of ver
bal cognition in a set of children, originally carried out in a study described by Osborne and 
Suddick (1972). In this study, a special set of children (N = 204) were measured in school 
on the Wechsler Intelligence Scale for Children (WISC; Wechsler, 1970) on four separate 
occasions. 

Figure 23.1a is a collection of dots and lines now commonly referred to as “longitudinal 
trajectories.” The long history of this term is not widely known (see McArdle, 1988, 2001; 
McArdle & Nesselroade, 2003), but it is definitely popular (e.g., Raudenbush, 2001). One 
common definition is that “a trajectory is the path a moving object follows through space 
as a function of time” (http://en.wikipedia.org/wiki/Trajectory). In this case the people are 
thought of as moving through time (the X-axis), and the score they obtain on the WISC 
measure (Y-axis) is plotted as a dot; these dots are supposedly comparable over these ages. 
That is, we assume that the WISC score means the same thing at each time, so any score 
changes reflect changes in the people. Then the dots for the same person are connected 
by a straight line to form the individual trajectory. Of course, the scores could fluctuate in 
many ways between the dots (Wohlwill, 1973). 

Figure 23.1b is a plot of the same WISC data, but here the information is presented in 
a scatterplot matrix. This shows the within-time univariate distributions on the diagonal 
and the time-to-time pairwise relationships among all persons on the off-diagonals. In this 
type of plot we can envisage data from all the people, and this even makes it easy to spot a 
few odd scores (the dots away from the main plot). There are many ways to plot longitudinal 
data (e.g., see Wainer & Spence, 2004), but it is hard to make the connections achieved by 
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fIGURe 23.1a. Individual trajectories on the WISC Verbal scales (N = 50). 
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fIGURe 23.1b. A scatterplot matrix for four occasions of WISC data (N = 204). G, grade. 

the simple lines and dots of Figure 23.1. In fact, it seems a bit easier to use Figure 23.1 to 
identify where a person has been and where he or she is going. Thus one advantage of the 
longitudinal trajectory plots is that they can help us tell a clear story about the person. 

It has been my pleasure to deal with these longitudinal WISC data for about 20 years 
now, and I have tried many different kinds of analyses, including the beginnings of latent 
curve analysis (McArdle & Epstein, 1987), multivariate latent curve analysis (McArdle, 
1988), multiple group factor analysis of latent curves (McArdle, 1989), autoregression ver
sus latent curves (McArdle & Aber, 1990), multivariate analysis of variance (MANOVA) 
and the beginnings of latent change score analysis (McArdle & Nesselroade, 1994), and 
multivariate latent change score analysis (McArdle, 2001). I do not think I have found the 
best or most proper way to analyze these data, but I have certainly tried a lot of different 
forms of data analysis with these WISC data. I summarize my efforts here. 

In a chapter on this topic Baltes and Nesselroade (1979) make a claim that, in studies of 
developing organisms, we often rely on some combination of information about (1) between-
person differences, together with (2) within-person differences. In the prior literature on 
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387 23. Foundational issues 

human development, these complex data collections are generally used for the study of 
intraindividual and interindividual differences. Instead of defining this in terms of algebraic 
relevance, they simply presented the five goals of longitudinal data analysis listed in Table 
23.1. 

What I am going to do now is use these five goals as my organization of our pos
sible data analysis techniques and strategies. I am sure I will take some liberties with my 
reexpression of these earlier ideas, but I try to follow Baltes and Nesselroade (1979). Sev
eral decades ago longitudinal analyses were based largely on principles derived from linear 
growth models and formalized in terms of analysis of variance (ANOVA) techniques (e.g., 
Bock, 1975). In earlier work, these concepts were extended in the creation of randomized 
blocks and Latin squares (see Winer, 1962). Nowadays in research on human aging we often 
separate cross-sectional “age differences” from longitudinal “age changes” (see McArdle, 
2009). Most of the newest analyses of developmental data analysis use information gathered 
from both cross-sectional and longitudinal selections in what are often termed “panel stud
ies” (Hsiao, 2003). 

The recent presentations on longitudinal data analysis are based on statistical proce
dures that combine these seemingly separate estimates. One way to do this is to create an 
“expected trajectory over time,” in which the expected values are maximum likelihood esti
mates (MLE) and formal tests of hypotheses are encouraged (e.g., Hsiao, 2003; Miyazaki 
& Raudenbush, 2000; cf. McArdle & Bell, 2000). New computer programs for what are 
termed “latent curve” or “mixed effects” modeling allow model parameters to be estimated 
and used in making predictions and inferences. But this chapter is based on earlier work 
on longitudinal structural equation models (SEM; see McArdle, 2009). It is most important 
to recognize that we need to have some ways to understand these longitudinal data, and 
several theoretical statements have been formalized into “models” with useful statistical 
properties. These models allow us to consider alternative substantive ideas to fit these 
alternatives to our data and hopefully to make an informed choice about which alternatives 
are most useful. The great failure of any kind of analysis comes when a researcher reflex
ively applies any methods without thinking about what they mean and/or when the model 
predictions fail to look like the data. 

I should state up front that, in my view, the current SEM approach is far less revolu
tionary than the past work. I think the new SEM techniques are not really much better than 
the old ones (cf. Raykov & Marcoulides, 2008). In my view, the classical techniques still 
form basic guideposts, and there are many worthwhile aspects of the older classical calcula
tions. I mainly use SEM because it is convenient now. 

table 23.1. five objectives of longitudinal Research 

1. Direct identification of intraindividual changes. 

2. Direct identification of interindividual differences in intraindividual changes. 

3. Analysis of interrelationships in change. 

4. Analysis of causes (determinants) of intraindividual change. 

5. Analysis of causes (determinants) of interindividual differences in intraindividual change. 

Note. Based on Baltes and Nesselroade (1979). 
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388 v. InteRIndIvIdUal and IntRaIndIvIdUal lonGItUdInal analYsIs 

Issue 1: studying Interindividual changes with sem 

The very first issue we consider is how to organize information about the changes within 
a person. Baltes and Nesselroade (1979) used the term intraindividual differences but I 
now think it is better to state this as within-person changes (McArdle, 2009). There are 
two reasons for changing the prior terminology: (1) The term within is traditional ANOVA 
terminology to designate the separation of scores for the same person. This is in contrast 
to components that are “between persons.” (2) The term differences rather than changes can 
then be reserved for models that imply the separation of different people. 

A first important set of models for repeated-measures data has emerged from the “time-
series” perspective and applied to panel data (see Andersen, 1971; Browne & Nesselroade, 
2005). These models essentially suggest that the “future is predictable from the past” and 
that we should use this as a main feature of our analysis. The path diagrams of Figure 23.2 
describe some options for these kinds of time series analyses of the WISC data. In general, 
a model is written in which the future deviation at time point [t] was predicted from devia
tion at the prior time point ([t – 1]) using a linear regression model with fixed parameters 
(b0, b1) and independent errors (e[t]). The utility of time series regression appeals to some 
researchers more than others (McArdle & Epstein, 1987). 

The path diagrams of Figure 23.2 provide an exact translation of the necessary matrix 
formulation of these models (see McArdle, 1986, 1988), so none are provided. These path 
diagrams can be conceptually useful devices for understanding the basic modeling concepts. 
They are also practically useful because they can be used to represent the input and out
put of any computer program. In these path diagrams the observed variables are drawn as 
squares, and the unobserved variables are drawn as circles. Model parameters representing 
“fixed” or “group” coefficients are drawn as one-headed arrows, and “random” or “individ
ual” characteristics are drawn as two-headed arrows. Here, the initial scores are random 
variables with no means but “random” variances (s[1]2), and the effect of these scores on 
later scores is designated with regressions (b[t]). Standard deviations of the residual terms 
(Ye) are also included (as in McArdle & Hamagami, 1991). 

Figure 23.2a is a simple diagram in which everything in the past is used to produce (or 
predict) the future behaviors on the WISC. That is, the 1st-grade scores are used to produce 
the scores at the second grade, the fourth grade, and the sixth grade with unknown coef
ficients of proportionality (a[t]). This implies that deviations from the mean for any person 
in the scores at later grades can be accounted for to some unknown degree by the early 
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fIGURe 23.2a. A “fully recursive” Markov chain model with time-based effects. 
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fIGURe 23.2b. An equal-time, equal-parameter “Markov simplex” model. 

deviations from the mean. In a similar fashion, the second-grade scores are used to produce 
the fourth- and sixth-grade scores, and the fourth-grade scores are used to produce the 
sixth-grade scores. This kind of model is termed fully recursive because it requires as many 
parameters to be calculated as there are correlations observed in the data (Fig. 23.1b), so it 
is really not testing any major substantive idea here. To be clear, in this popular formulation, 
we are not really able to test whether or not the past predicts the future, or even vice versa, 
but we can use this approach to calculate the predicted values. 

Figure 23.2a can have some important constraints. In a new version of this model, we 
can say that the only predictors needed for future scores are the ones in the immediate past. 
That is, the first affects the second, the second affects the fourth, and the fourth affects the 
sixth, and that is all that is needed to predict the future values. Because the time points are 
not equally spaced, we typically do not add further constraints to this model. This means 
we can eliminate three parameters from Figure 23.2a, and we can test this comparison of 
parameters as a formal hypothesis with three degrees of freedom (df). It is useful to restate 
that we are actually testing the importance of parameters that are not present, not the ones 
that are present. By fitting this alternative model, we can examine whether or not these 
simple time series restrictions seem reasonable for these WISC data. 

We can add another important component to this model—a latent variable (LV), typi
cally drawn as a circle with an arrow pointing directly to the square. This kind of LV is used 
because we want to assume that the time series process does not apply to the observed or 
manifest variable (MV), but the process applies to one key source of the variation in the 
MV—namely, the LV over time. Here we assume that there is one LV at each time, that 
the part of the MV that is not attributable to the LV is “unique,” it may be partly “error 
of measurement,” and it has the same variation at all times; this is exactly like a common 
factor model, but here the common factor has only one indicator, so it is not broad in any 
sense, nor is it tested in a rigorous way. But we should not underestimate the importance 
of this LV idea. One benefit of using LVs here is that we can estimate the process in the 
presence of random error (see Heise, 1975; Jöreskog & Sorbom, 1979). In this formulation, 
the time series for the LV is error-free, so we should find it to have predictions that are 
absent of error, and thus higher in accuracy. The model may fit the data better using this LV 
approach, but we do not have nor will we obtain estimated scores for the LVs. What we can 
examine is the effect of measurement error on our understanding of the process. 

Figure 23.2b is an alternative and possibly simpler way to use LVs. Here we start 
with Figure 23.2a, but we then eliminate the parameters described earlier, and we add 
two LVs at the third and fifth grades to deal with the “unbalanced” data over time. In this 
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conception, we assume that the children have verbal ability scores at each occasion, but we 
recognize that we did not measure them at these occasions. The main benefit of this type of 
LV model is that now we can consider a process that is measured over fairly equal units of 
time. That is, the interval of time between each LV is now 1 year, so we can constrain the 
parameter to be identical over time (b[t] = b). This simplifies the analysis because now we 
only have one parameter for any 1-year interval of time, and we have two additional dfs to 
test the validity of this proportional prediction. Due to its simplicity, the prediction system 
is formally known as a “Markov simplex” model, but this seems to be misunderstood in the 
current literature (see Jöreskog & Sorbom, 1979; McArdle & Aber, 1990). 

All of these time series models of Figure 23.2 were fitted to the WISC data, but they 
did not seem to fit very well; that is, the misfit index (c2) was large relative to the df (for 
details, see McArdle & Aber, 1990; McArdle & Epstein, 1987). The great success of time 
series models is that they allow us to make predictions about the future, and these predic
tions are fairly simple, but the failure to fit these models here means that these predic
tions were not very close to what had actually happened in the WISC scores. Part of this 
was the prior problem of “unbalanced” sequences (i.e., a 1-year gap, then a 2-year gap), 
but this seemed manageable (i.e., Figure 23.2b). But another part of the overall misfit of 
these models to the WISC data was clear—these time series models typically make an 
assumption of “stationarity”—that the variances (and covariances) remain the same over 
all times because the system has reached a “steady state of equilibrium” (see Heise, 1975). 
Equilibrium does not seem to be a reasonable assumption for verbal abilities in this young 
age range, and it is probably not a reasonable assumption for many other situations, either. 
Another assumption that was not tested is that the mean changes are not central to our 
understanding of the process. This problem does not create more of a misfit, but it can be a 
problem when the change for the whole group is a key part of the substantive questions. 

To deal with some of these problems, a seemingly completely different set of models 
was also used. They are termed latent curve models (LCM), and they can be fitted by either 
approximate ANOVA methods or exact SEM methods (Meredith & Tisak, 1990; see McAr
dle, 1986, 1988; McArdle & Epstein, 1987; McArdle, Ferrer-Caja, Hamagami, & Woodcock, 
2002). This LCM approach typically starts by assuming we have a trajectory equation for 
each occasion for each person formed as the sum of (1) unobserved or latent scores repre
senting the individual’s initial level ( f0), (2) unobserved or latent scores representing the 
individual change over time or slope  ( f1), and (3) unobserved and independent unique fea
tures of measurements (u[t]). In this model the arrows from the latent slopes to observed 
variables are a set of group coefficients or basis weights that define the timing or shape of the 
trajectory over time (e.g., a[t] = t – 1). We create this carefully selected set of basis weights 
(as a[t] = [0,1,3,5]) so it takes care of the unbalanced time delay between occasions. 

One version of this type of model is presented as a standard path diagram in Figure 
23.3a. As before, the path diagrams of Figure 23.3 provide an exact translation of the neces
sary matrix formulation (see McArdle, 1986, 2007). In this case the initial level and slopes 
are often assumed to be random variables with “fixed” means (m0, m1) but “random” vari
ances (s02, s12) and correlations (r01). The standard deviations (sj) are drawn to permit 
the direct representation of the correlations (see McArdle & Hamagami, 1991). One new 
feature here is the use of a triangle to represent a measured variable that has no variation— 
that is, the unit constant. The key reason this new option is added to the path diagram is to 
allow us to make hypotheses about the group means. In LCM we want to make hypotheses 
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fIGURe 23.3a. A path diagram for a latent curve model with linear “slopes” based on weights A[t]. 

about the group means and covariances that use the same parameters of proportionality 
(i.e., the basis a[t]). 

This LCM path diagram can also be interpreted as a two-common-factor model with 
means. The first latent factor score is an intercept or level score (labeled f0), and the second 
latent factor score is a slope or change score (labeled f1). The relationships between the 
latent levels f0 and all observed scores Y[t] are fixed at a value of 1. In contrast, the relation
ships between the latent slopes f1 and all observed scores Y[t] are assigned a value based 
on the time parameter a[t], which, depending on the application, may be fixed or estimated. 
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fIGURe 23.3b. Linear regression estimates of individual growth curves (n = 50). 
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For simplicity, the unique components (u[t]) are constant (Ye) and uncorrelated with other 
components. In this longitudinal model the change score ( f1) is assumed to be constant 
within an individual, but it is not assumed to be the same between individuals. The latent 
variables are written in lower case ( f0, f1) because they are similar to the predicted scores 
in a standard regression equation; that is, we do not use Greek notation because these 
scores do not need to be estimated (but see Figure 23.3b). Perhaps it is obvious, but this 
LCM is not the same as the prior time series model conception. 

This simple linear LCM was fitted to the WISC data, and the results yielded a much 
better fit than found with other models (see McArdle & Aber, 1990). Several key issues can 
be seen in the simpler ordinary least squares (OLS) estimates of individual linear growth 
in Figure 23.3b. This plot is the result of extracting the longitudinal data for each individual 
and running a separate regression analysis for each person, whereas the WISC score was a 
simple linear function of time, and the plot included expected values. This yields estimates 
of linear equations with intercepts and slopes for each person, and this is a good way to see 
the key features of the LCM. First, the people vary at the first occasion, and this is a clear 
estimate of the intercept term in the LCM. In this figure it is clear that all persons are not 
alike—(1) we have an average intercept and a variation around this average; (2) we have 
a mean slope, a variation around this mean, and a possible covariance with the intercept 
score; and (3) we can see that the model does not fit all the data points (dots) in the plot. 
Thus we take the best parts of the LV approach, including the removal of independent 
unique variability, and the evaluation of systematic levels and slopes, and we add this to the 
individual and overall statistical indicators of goodness of fit. 

Another interesting point is that the standard LCM is identical to the typical univariate 
repeated-measures ANOVA when the slopes are not allowed to vary (see McCall & Appel
baum, 1973). That is, the LCM approach offers a direct way to test the standard ANOVA 
as a simplified hypothesis (i.e., restricting the variance and covariance of the slopes to be 
zero results in “compound symmetry”). Although this standard ANOVA model may be rea
sonable in a number of circumstances, it is not reasonable with these WISC data because 
children do seem to vary in their slopes. 

Although a linear scaling of the basis is very popular (see Singer & Willett, 2003), it 
is only one of many that could be used. For example, it is possible to add a lot of nonlinear 
complexity to the simple growth curve models for the study of within-person changes. For 
example, Wishart (1938) introduced a fundamental way to examine a nonlinear shape—the 
use of power polynomials to better fit the curvature apparent in growth data. The indi
vidual growth curve (consisting of t = 1, T occasions) is summarized into a small set of 
linear orthogonal polynomial coefficients based on a fixed power series of time (a[t], ½a[t]2, 
1 3 a[t]3, . . . 1/p a[t]p) describing the general nonlinear shape of the growth curve. A second-
order (quadratic) polynomial growth model implies that the loadings of the second com
ponent are fixed to be a function of the first components (i.e., the derivative is linear with 
time). 

The quadratic form of this basic model can be depicted as a path diagram as well (not 
included here). This can appear to be a bit complicated because it requires a third latent 
component with a basis that is related to the first one (i.e., ½a[t]2), but all of this is done so 
that the implied change is linear with time (i.e., we add acceleration). Additional variance 
and covariance terms can be used to account for individual differences in these new LVs. In 
order to clarify these expressions, OLS quadratic regressions can be estimated for all the 
WISC scores on an individual basis (as in Figure 23.3b). Typically we find that introducing 
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393 23. Foundational issues 

some curvature allows the model to approximate the data points more closely. Of course, 
a model of growth data might require this form of a second-order (quadratic), third-order 
(cubic), or even higher order polynomial model fitted to the data, and this family kind of 
nonlinear models are very popular (e.g., Bryk & Raudenbush, 1992). 

One reason researchers like the LCM logic is that it permits many alternative exten
sions. A different alternative to the linear growth model was brought to light by Meredith 
and Tisak (1990)—the model proposed by Rao and Tucker in the form of summations of 
“latent curves.” These innovative techniques were important because this made it possible 
to represent a wide range of alternative growth and change models by adding the benefits 
of the SEM techniques (McArdle, 1986, 1997; McArdle & Anderson, 1990; McArdle & 
Epstein, 1987; McArdle & Hamagami, 1991). Our use of this latent curve concept can be a 
minor adjustment to the LCM of Figure 23.3a: We allow the curve basis to take on a form 
based on the empirical data. In this example we simply write a model for the same person 
at multiple occasions in which the last two basis coefficients a[3] and a[4] are free to be esti
mated (the first two are still fixed at a[1] = 0 and a[2] = 1). The actual time of the measure
ment is known, but the basis parameters are allowed to be freely estimated so we can end 
up with different distances between time points—that is, an optimal shape for the whole 
curve. The estimated basis has been termed a “metameter” or “latent time” scale that 
can be plotted against the actual age curve for clearer interpretation (McArdle & Epstein, 
1987). There are many ways to estimate these model parameters in an LCM framework, 
but this is very difficult to do with OLS, so these values are not estimated here. 

The time series model and LCMs are only two approaches to the analysis of within-
person changes that, while representing major modeling approaches, barely touch the sur
face of all other possibilities (e.g., see Walls & Schafer, 2006). These illustrations mainly 
show that any SEM, based on autoregressive (AR)-type models or LCMs, is used to make a 
prediction about the longitudinal trajectory based on a substantive issue. Thus both kinds of 
models have their place in the array of possible analytic frameworks, and choices between 
models are not often so easy. Some of these choices are simply defined by the data. For 
example, we might have a data set in which the individuals are measured repeatedly at 
more time points (e.g., T = 100). In this sense, this WISC collection of complete cases at a 
few time points (T = 4) is fairly easy to consider, even if the timing is unbalanced, and this 
allows us to go a bit further here. 

Issue 2: studying Interindividual differences  
in Individual changes with sem 

The second aspect of Baltes and Nesselroade’s article (1979; see also Table 23.1) is the 
suggestion that we consider analyses focused on differences “between groups of persons 
in the way people change.” In the WISC data we found that the original authors measured 
mothers’ educational attainment levels before the children went to school at all; this showed 
a wide range across children, and we used this as the between-group variable (MOED). In 
one simple approach, we can just subdivide the WISC data into groups based on MOED and 
see whether or not the trajectories appear to differ. 

At this time, we can consider four ways that the available SEM can be used to achieve 
these goals. We can (1) add measured variables (X) that define group differences into the 
previous expressions, (2) use the group variable to split the observed data into subsets for 
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separate analyses, (3) define the grouping variable based on patterns of available data to 
deal with incomplete pieces, and/or (4) create latent groupings of people based on the pat
tern of available data. Of course, in any of these between-persons models the overall misfit 
can also be decomposed into individual components and outliers can be examined (e.g., 
McArdle, 1997). 

Let us first add a measured variable (X = MOED) to characterize group differences 
directly into the previous linear expressions. Indeed, the most popular model used nowa
days is the inclusion of the between-persons predictor in an LCM framework and having 
this static (one time of measurement) group variable account for systematic variation in 
the latent levels and slopes. As in any regression analysis, the coding and scaling of the 
between-person variable will lead to different estimates of effects. This type of SEM is 
depicted in Figure 23.4a and typically called by terms that are based on the history of 
its development with a substantive discipline: This model is termed an LCM in psychol
ogy (Meredith & Tisak, 1990), multilevel modeling in education (e.g., Bryk & Raudenbush, 
1992), and a mixed-effects or random coefficients model in statistics (e.g., Longford, 1993). 
To be fair, there are advantages to considering these analyses within each discipline, but it 
is most important to note that variations of this analysis can be done using many computer 
programs, and the results are identical (see Ferrer, Hamagami & McArdle, 2004). In our 
prior WISC analyses, we have found that both the intercept and the slope were significantly 
higher for children whose mothers’ educations were initially higher (see McArdle, 1989). 
Two of the limits of this popular approach quickly become evident: (1) We need to select an 
overall basis function for the entire group, and (2) the variance and covariance of the residu
als of the latent variables must be the same over group. 
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fIGURe 23.4a. A “multilevel” or “mixed-effects” model or LCM with an external G variable affect
ing both the latent levels and latent slopes. 
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395 23. Foundational issues 

A second analysis that does not require these constraints is to use the group variable to 
split the observed data into subsets for separate analyses. This is illustrated in the diagram 
of Figure 23.4b. This approach explicitly recognizes that separate models are allowed, so 
not all persons need to have the same within-person change model. In an SEM framework, 
checking whether or not the model and the model parameters are identical across inde
pendent groups is based on multiple group factor analysis (MGFA; Horn & McArdle, 1992; 
Sörbom, 1979). 

Practical problems occur in any longitudinal study, including initial self-selection 
and dropout (or attrition). In prior work, a multiple-group SEM approach has been used 
(Jöreskog, 1971; McArdle & Hamagami, 1992) to deal with problems of “incomplete data” 
(see Cudeck, 2000; McArdle, 1994). In this situation, we can use the MGFA approach, 
defining the grouping variable based on patterns of available data to deal with incomplete 
pieces (with the incomplete data simply drawn as circles in the path diagram). We then 
assume that all parameters are invariant over all groups so that we mimic the assumptions 
of data missing at random (MAR; Little & Rubin, 1987; McArdle, 1994) and obtain tests of 
fit to represent MAR as a testable hypothesis. 

In recent work much more complex models have been fitted using a raw data approach 
that does not require the data blocked into simple patterns (see Hamagami & McArdle, 
2000; McArdle, Hamagami, Meredith, & Bradway, 2000; McArdle & Woodcock, 1997). 
Many of these can be seen from the perspective of multiple-group models with different 
numbers of data points on each person (McArdle & Hamagami, 1992). In this case, a model 
of “longitudinal convergence” (after Bell, 1954; McArdle & Bell, 2000) is a reasonable goal 
of many studies, but it is not always a hypothesis that can be tested with incomplete pat
terns (McArdle & Anderson, 1990). Instead, the MAR assumption is viewed as a conve
nient starting point, allowing us to use all the available information in one analysis, but it 
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fIGURe 23.4b. Multiple-growth models for independent groups. The key question now is “Are any 
parameters not meaningfully the same (invariant) over groups?” 
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could be incorrect for a number of reasons (e.g., Cnaan, Laird, & Slasor, 1997; McArdle, 
1994), but these key assumptions should be examined. Thus, instead of simply stating that 
MAR is a reasonable assumption, we should investigate methods for evaluating the failure 
of these assumptions. We can examine a model on the data that are already available, or we 
can gather extra information about the selection process (see Hedeker & Gibbons, 1997). 

The benefits of considering incomplete group data are profound. For example, one of 
the corollary between-group issues is the potential for combining cross-sectional and longi
tudinal data. In one early resolution of these problems, Bell (1953) created a data collection 
he termed accelerated longitudinal data. To examine such ideas, Bell (1954) showed that by 
selecting data from a more time-consuming longitudinal study (i.e., by deletion of some of 
the existing data) he would get the same results. To ensure uniformity of the outcomes, 
Bell suggested a test of “convergence” of the cross-sectional and longitudinal data, created 
by joining together the shorter spans of data from people who were most similar at the end
points. In contemporary work, this is now fitted with “invariance of the basis coefficients” 
(McArdle & Anderson, 1990). Bell (1954) demonstrated that estimates and inferences were 
basically the same, even though the data collection was accelerated, and we now do the 
same analysis using statistics for incomplete data (Hsiao, 2003; McArdle & Bell, 2000; 
Miyazaki & Raudenbush, 2000). 

A fourth way of dealing with between-group differences is to create latent classes 
of different people based on the pattern of available data. It is always worth considering 
whether we have unmeasured subgroupings of people in our data set. It is now popular to 
explore these ideas with unobserved but heterogeneous subgroups, as in the SEM work on 
latent mixture models (LMM; Bauer & Curran, 2003; McLachan & Peel, 2000; Muthén, 
2004, 2006). The defining feature of this model is that an SEM may be appropriate for each 
subgroup of persons, but there may be completely different SEMs for different unobserved 
subgroups; what we end up within the total group is a “mixture” of people. To better under
stand the class assignment of individuals, we can also write a prediction model (typically 
based on logistic regression) in which the probability of latent class membership is describ
able by other measured variables. The use of multiple parameters and a combined model 
is relatively new to this area, but it is potentially a reasonable and convenient way to deal 
with the problem of heterogeneity in a single-group data collection design. In the LCM 
context, this problem is often termed a “latent growth mixture model” (LGMM); this is 
essentially an effort to estimate the influences of LVs that are categorical, and this has an 
interesting history (see Bartholomew, 1987; Muthén & Shedden, 1999). This organization 
of information is the same as in Figure 23.4b, but, most important, the group membership 
is not known until the analysis is carried out. We have used LGMM with the WISC data and 
found this somewhat novel approach to be informative. 

Issue 3: studying Interrelationships in Individual changes 
with sem 

The next question we face is what to do when we have multiple outcome variables. Figure 
23.5a is a simple example of data from the WISC study. Here we plot both the longitudinal 
trajectory of the Verbal scales and the same for the Non-Verbal scales. The questions we 
ask begin with a surface look at the similarity of models across variables, but the deeper 
questions emerge about the time-dependent relationships of each variable to one another. 
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fIGURe 23.5a. Longitudinal WISC data on two variables (N = 204, plotted n = 50). 

One natural model for multivariate longitudinal data is to examine the LCM of a com
mon factor score. Basically, each MV is thought to be an indicator of one or more LVs, and 
it is this LV that carries the information over time. The key requirement here is that the 
factor pattern for the LV relationships is invariant over time (see McArdle, 1988, 2007). If 
invariance can be established, the LCM can then be applied to the LV[t] for examination of 
the common intercepts and slopes. In this model, the unique variance at the second level 
does not have any measurement error, so we have a clear indication of within-time vari
ability that is not correlated over time (termed state variance by Cattell, 1959, as reported 
by McArdle & Woodcock, 1997). This model was termed a curve of factor scores (CUFFS; 
McArdle, 1988), and it still seems useful to some researchers (see Ferrer, Balluerka, & 
Widaman, 2008). 

A different model for these same data is presented in Figure 23.5b. This model starts 
by fitting separate latent curves to each variable, and here we could establish any similarity 
of the curves—that is, we could first test the equality of the group slope parameters (a1[t] 
= a2[t], etc.). Equality or invariance of this process is not required but can be studied. Most 
important, we can join these models at the individual level by correlating the latent inter
cepts and the slopes (see McArdle, 1989). That is, rather than correlating the variables at 
the same times, we correlated the components of the curves over time. The correlation of 
two or more latent slopes offers a broad single indication of whether one variable is chang
ing in the same people as another variable. Testing the similarity of individual changes 
using the slope scores has proven to be a bit tricky, because the variances and covariances 
of the slopes need to be considered, and one is left wondering what to do about the intercept 
term. Basically, these are not separable concepts in most observational studies, because 
the intercepts and slopes are thought to occur at the same times. This SEM could be useful 
in the beginnings of an investigation into “correlated changes.” If the correlation of com
ponents of change is our goal, we do not even need to measure the variables at exactly the 
same occasions or with exactly the same frequency. 

One obvious extension of this logic is to examine common factors of the multiple 
intercepts and multiple slopes. One persistent problem with this model is the rather arti
ficial separation of intercepts from slopes, because they are conceptually part of the same 
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fIGURe 23.5b. A latent growth model for multiple variables. Based on McArdle (1988, 1989). 

process. Nevertheless, such a model was initially termed a factor of curves scores (FOCUS; 
McArdle, 1988), and it is still considered useful by some researchers (see Duncan, Duncan, 
& Stryker, 2006). 

No doubt there are many other models for multivariate longitudinal data that can be 
created to deal with this type of problem. However, most of these do not deal with spe
cific timings, which was a direct focus of our autoregressive starting point. The bivariate 
and multivariate illustrations presented here dealt with the critical problem of interrela
tionships among different growth variables. In previous work, McArdle (1988, 1989, 1991) 
outlined some of these issues and fit a model in which the levels and slopes of one series 
was correlated with, or regressed upon, the levels and slopes of a different series. Similar 
multiple-variable latent variable modeling analyses have been used and reported by others 
(e.g., Raykov, 1997; Walker, Acock, Bowman, & Li, 1996). These kinds of analyses formal
ize an idea that the correlation among the slopes of two different variables may reflect the 
“common changes” (Griffiths & Sandland, 1984; McArdle & Nesselroade, 1994). 

Issue 4: studying determinants (causes) of Individual changes 
with sem 

There are many alternative longitudinal models that can be fitted to these kinds of longitu
dinal data in Figure 23.5a (page 397), and some of these take into account the ordering of 
the responses. In these SEMs it is also important to recognize that models of individual-
differences relationships among dynamic variables do not necessarily reflect dynamic processes 
for the group. The latter interpretation requires a focus on time-based parameters in the 
models and not on the time-independent correlation of the time-based scores (e.g., Gollob 
& Reichardt, 1987). 
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Following the previous work on common factor analysis and cross-lagged regression 
(Jöreskog & Sorbom, 1979) we can simply assume that, for the MV[t], the observed raw 
score measured can be decomposed into the sum of a common factor score and a unique 
score. This algebraic form is depicted in the path diagram of Figure 23.6a by having the 
latent variables and the error scores add to each other (i.e., with unit weights) to form the 
observed variables. Additional restrictive assumptions about random errors imply that the 
true scores include any common factors, as well as any specific factors. 

Next we need to represent the changes within a person over time. We define a latent 
change score (LCS) between any two latent scores as the part of a later latent score at one 
time that is not part of it at the earlier time. We can simplify a lot of the required algebra 
by always assuming that the interval of time between LVs is the same. The simplifying 
assumption of equal latent intervals is not a testable feature of the model. In practice, it is 
not always possible and not always desirable to keep the MV intervals of time equal (see 
McArdle & Woodcock, 1997, 2000). We deal with this practical problem by making a clear 
definition of the patterns of complete and incomplete data (see Horn & McArdle, 2007; 
Jöreskog & Sorbom, 1979; McArdle, 1997; McArdle & Aber, 1990; McArdle & Bell, 2000; 
McArdle & Hamagami, 1991). In the path diagram of Figure 23.6a the LCS is drawn as a 
latent variable at each time, and the interpretation of this score as a change within a per
son is assured by the placement of the latent score at the first occasion and the LCSs (see 
McArdle & Nesselroade, 1994). 

We can now create an SEM that allows for dynamic inferences and reinforces the key 
idea—we now have individual changes represented as LVs, and these are the key outcomes. 
What the researcher must now do is pose a model for the latent changes (see Ferrer & 
McArdle, 2010), and this can be difficult for a number of reasons. First, we are not used to 
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fIGURe 23.6a. The latent change score (LCS) model based on both LCM and AR(1). 
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FIGURE 23.6b. Expected bivariate latent trajectories. 

doing this kind of work on an a priori basis, but this is needed to create an expected set of 
trajectories. Second, we are typically willing to explore and try a lot of different models to 
see what looks like the best fit. In the SEM approach used here, we are not restrictive, and 
many models of change are possible. 

These choices of dynamic models may be made on substantive or empirical consider
ations. In our initial examples, the model of latent change we used (Figure 23.6a) was based 
on a simple additive combination of the linear curve model and the autoregressive model 
(Figure 23.2, pages 388–389) and the linear latent curve model (Figure 23.3, page 391). 
This was written so time-based changes in the latent change score were allowed (1) to be 
constantly related to some alternative but fixed slope score (a[t] f1n), (2) to be proportional 
to the previous state (a[t] . y[t – 1]n), and (3) to include an additive residual or disturbance 
term (z[t]). This dynamic SEM can be completed by adding several parameters for the mul
tiple sets of latent variables. In all cases, we use fixed unit values to define the LCS, and 
we ensured the LCS were outcome variables. That is, the earlier LV in time is included as 
a predictor of the LCS, as is the common latent slope. All dynamic coefficients are repeat
edly used for all occasions, but this is a hypothesis that should be tested. Due to our use of 
two additive change components, we termed this a dual change score model (DCS; McArdle, 
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2001; McArdle & Hamagami, 2001). This DCS model has some interesting properties, 
including its ability to bring together both the LCM and the AR–SEM as proper statistical 
subsets. We can assume that the latent trajectories are smooth deterministic curves or 
have uniform random residual properties by eliminating the variance of the residual (z[t]). 

These kinds of univariate models were initially represented for the Verbal (V) and 
Non-Verbal (NV) scales of the WISC and were fitted using LISREL software. The results 
are presented graphically elsewhere (see McArdle, 2001). In each case (of V and NV) the 
models required at least as many parameters as were available in the DCS framework. That 
is, neither the autoregressive SEM nor the LCM fit these data very well, but the DCS was a 
great improvement. The resulting DCS equation for these trajectories for the overall group 
curve from the model parameters shows that the expected group mean will always increase 
both additively (by +2) and proportionally (by +0.09) per year. The simple substitution of 
specific time points (t = 0–10) into this equation results in the nearly straight average group 
curve. We note that trajectory estimates are made for grade 3 and grade 5, even though 
there were no group observations at this point, and also for t > 6 as a “forecast” of scores 
in future years. To better understand the meaning of the individual-differences parameters, 
individual latent curves were generated from the repeated application of the difference 
equation, and this yielded individual curves that follow the particular solution. The result
ing individual latent curves (for n = 50) are presented elsewhere and show significantly 
more nonlinear curvature than the means (see McArdle, 2001). This collection of curves 
also shows increasing variance of a “fan spread” (Shadish, Cook, & Campbell, 2002). 

These graphic illustrations from the WISC show only a sampling of the family of curves 
that can be generated from the few DCS model parameters. The results for the V model 
do not seem the same as the results for the NV; most obviously, one seems to grow up (V) 
and the other (NV) flattens out during this period of time. Tests for these kinds of bivariate 
models are well known in the SEM literature. A more challenging set of models is based on 
“time-varying covariates,” or “systems models,” and these are often not fully specified in 
SEM terms. However, let us now consider a bivariate model of change in which we write 
the prior difference equation for more than one dynamic variable. 

If we want to identify the interplay of two variables that are changing over time, we can 
follow the previous SEM logic and write the LCS model in which the change in one latent 
variable is a function of both itself and another variable. The most important features of this 
bivariate change SEM include (1) the separation of individual scores from group param
eters, (2) the assumption of a constant time interval, and (3) a separation of the true scores 
from the measurement error scores. Residual disturbances for each variable are included as 
well, but these will not be used. A path diagram of this bivariate dynamic model is presented 
in Figure 23.7a. As part of this SEM we include a representation of the change over time 
in the second LCS, including a constant change (ax), a proportional effect (bx) of the latent 
variable upon itself, and a “coupling effect” (gx) of the first variable. In this dynamic SEM 
it is clear that the predictors of one latent variable are embedded in the outcomes of the 
other variable and vice versa. In this bivariate form, model parameters may be simplified to 
deal with dynamic hypotheses about “coupling” or “lead-lag” relationships. Unlike all prior 
SEMs, these dynamic hypotheses may be considered in the presence of individual differ
ences in constant growth and change. These alternatives can be examined in combination 
with restrictions on the univariate (m and s) parameters of change within each variable, 
and the results can be plotted as a statistical vector field (SVF; Boker & McArdle, 2005; 
McArdle & Hamagami, 2001). 
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fIGURe 23.7a. A bivariate dual change score model. 
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The numerical results of fitting two bivariate DCS models to the four-occasion WISC V 
and NV scores (of Figure 23.5a, page 397) have been found using standard SEM programs, 
and some results are presented graphically in Figure 23.6b (page 400). In contrast to the 
univariate LCD results for V scores, here we obtained a large auto-proportion (ay = +.5), 
a small but negative mean slope (bsy = –1), and a nontrivial coupling parameter from latent 
NV[t – 1] to LCS[V] (gy = –.2). In contrast, the model for NV scores includes a smaller 
autoproportion (gx = –.0), a smaller positive mean slope (msx = 5), and only a trivial cou
pling. These bivariate results were used to calculate the expected values for a longer time 
sequence (t = 0–10). The plot of the V latent scores now shows what appears to be a rapid 
fanning out at both the upper and lower portions of the initial scores, whereas the NV scores 
appear to have more steady increases. The bivariate equations lead to latent curves with 
downward trends for both variables, with a larger impact on the V than the NV curves. 

The final two panels of Figure 23.6b represent a different kind of time-sequence plot 
because here, for each individual, we draw the V latent curve scores paired against the 
NV latent curve scores for the same occasions. This “state-space” pairing of latent growth 
curves seems to show that most individuals follow rapid increases in both variables with 
a few individuals dropping off toward lower V scores but higher NV scores. The initial 
levels and slopes are all positively correlated (e.g., rsy,sx = .8), and these correlations are 
informative because they describe the location of the individual dynamic curves in the 
time-sequence plots. The final panel of Figure 23.6b is the SVF version of the same bivari
ate curves. Each arrow here shows the general direction of all curves within that specific 
region (equal-sized cells) of these curves. That is, for any pair of latent scores at a specific 
time (i.e., x[t], y[t]), the small arrow points to where the pair of latent scores is expected to 
be at the next time (x[t + 1],y[t + 1]). This final figure seems to emphasize the increases in 
the upper left-hand quadrant of the bivariate field. 

A model with no effect of V on the NV changes was evaluated with a restriction that 
V[t – 1] did not affect LCS[NV], and this alternative fit the WISC data fairly well. In addi
tion, a model with no effect of NV on the V changes was fit where the NV[t – 1] did not 
affect LCS[V], but this did not fit the data. The collection of bivariate latent change score 
results leads to a few substantive conclusions about this dynamic system: (1) The variables 
are growing, so the standard cross-lagged assumptions (i.e., no growth) are not a viable 
alternative for these WISC data; (2) there is no effect of the Verbal latent scores on the 
NV latent changes; and (3) the NV latent scores significantly and negatively affect the V 
latent changes. Thus the NV scores are leading indicators of the growth in V scores, but not 
vice versa. As it turns out, this result is consistent with aspects of some prior developmen
tal theory in this area (see McArdle, Hamagami, Meredith, & Bradway, 2000). There are 
not many other SEMs that are used to establish time-ordered precedence (see Ferrer & 
McArdle, 2010; McArdle, 2009). 

Issue 5: studying Individual differences in the determinants 
of Individual changes 

Our final goal is to combine the concepts of the previous models but add separate group 
issues. One way to see this is as a multiple-group (MG) SEM, and this might start with the 
bivariate change model in Figure 23.7a. Without further detail, we should be able to see this 
path diagram for multiple groups (as in McArdle & Prindle, 2008). In any case, all forms 
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of between-group analysis are of obvious importance in the study of dynamics: (1) MVs 
that are measured at one time (static) can be added into the dynamic model, and this could 
change the coupling parameters; (2) the MG–SEM approach allows all of these options, plus 
it allows the dynamic influences to be completely different across different manifest groups; 
(3) incomplete data modeling by MG–SEM or other approaches is fundamental in dynamic 
analysis (see Hamagami & McArdle, 2000); and (4) the determination of unobserved latent 
classes of persons who are following the same dynamic process is essential (see McArdle & 
Prindle, 2008). Variations on these MG–SEMs can be used to examine different combina
tions of variables or latent mixtures (Muthén & Muthén, 2005; Nagin, 1999). 

The methods and results of research on group differences in dynamics have not been 
applied to these WISC data. But these kinds of SEMs are detailed in McArdle (2006) with 
data from the Berlin Age Training Study (with the permission of the authors, Baltes, Ditt
mann-Kohli, & Kliegl, 1986). The general purpose of this data collection was to evaluate 
theory of “cognitive plasticity,” which suggested that older adults have untapped cogni
tive resources that can be stimulated by cognitive training. The study participants were 
randomly assigned to one of two groups: (1) one in which they were trained on one of 
two cognitive tasks (n = 161) or (2) a no-contact (not trained) control group (n = 87). 
The cognitive training program consisted of 10 consecutive sessions, and each dealt with 
training specifically focused on the improvement of aspects of “fluid intelligence” or “rea
soning in novel situations” using training methods developed in earlier research. A cogni
tive measurement design included four rounds of repeated cognitive testing: (t = 0), a pre
test measurement followed by 1 month of training or of no contact; (t = 1), a 1-week posttest 
measurement; (t = 2), a 1-month posttest measurement; (t = 3), and a 6-month posttest (t 
= 4) measurement. These time points were chosen because they were thought to represent 
critical junctures in the learning of these cognitive tasks. At each measurement session, a 
battery of cognitive tests was repeatedly administered, and two of these tests were used 
here: (1) Induction (IND), a “near-transfer” test expected to be directly affected by the 
specific training; and (2) Vocabulary (VOC), a “far-transfer” test not expected to be affected 
by this training. 

Standard repeated-measures ANOVA models were used by Baltes and colleagues (1986), 
but these analyses were not intended to capture the possible within-persons changes, or 
individual transfer effects. Raykov (1997) reanalyzed one subset of these data using a model 
for multiple indicators of an Induction factor. The SEMs were based on factor analysis in 
multiple groups with correlated growth curves (McArdle, 1989). Raykov (p. 310) concluded, 
“the results indicate (a) group equivalence in the pattern of temporal development of abil
ity variances, and (b) training effects in the experimental group that are stronger than the 
practice/experience effects in the control group, and both types of effects are maintained 
over the 6-month testing period.” McArdle (2007) used the same data but asked the spe
cific questions about group differences due to training as a dynamic system. The MG–SEM 
approach allows for differences in the latent means, slope variances, residual variance, and 
dynamic coupling of the respective trajectories. But the groups could have a different set of 
coupling parameters, implying a more fundamental impact of the experiment—alterations 
in the dynamic system due to the treatment. 

These new results suggested that the Vocabulary scores exhibit proportionally more 
unique variance (and hence are less reliable, although the correlation among the latent lev
els is positive [+.5]). In terms of the group differences, one clear training impact is that the 
constant slopes are much higher in the trained group for both variables. This is interesting 
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as the second variable (Vocabulary) is a “far-transfer” variable, and no real training differ
ences were expected. This interpretation of mean changes for different variables is often 
characterized as a “transfer of training” (e.g., Baltes et al., 1986). The correlations among 
the latent slopes are high (+.8) in the control group and lower in the experimental group 
(+.5), but this is not what we expected as an impact when training is transferred. Further 
group differences include parameters with different signs, so their total impacts are hard 
to interpret directly or individually. In the control group, all parameters were accurately 
different from zero, so this was a coupled system of latent scores. In contrast, the results for 
the treated group suggested higher autoproportions and no accurate coupling parameters, 
so this was as an uncoupled system of latent scores. 

The net result of the experimental training manipulation was that the treatment both 
raised and uncoupled the scores on the two variables. This result suggests no strong evi
dence of a transfer of training across these variables, This result could be due to the fact that 
training helped focus the persons on all tasks and especially focused on the Induction-like 
tasks (near transfer). At the same time the pattern of individual differences apparent here 
suggests that the specific training seems to have set the Induction variable farther away 
from the Vocabulary variable than it was before. The expected values from these param
eters are those displayed as vector field plots for each group in Figure 23.7b (page 402). Both 
figures show an interesting dynamic property—the change expectations of a dynamic model 
depend on the starting point. Thus, the training seems to have isolated the abilities that were 
trained and possibly moved these scores toward other, unmeasured variables. 

It may be clear that these kinds of dynamic differences due to training are not easy to 
see in the typical comparison of changes in the means, as in repeated-measures ANOVA. 
An updated version of this kind of MG–SEM dynamic analysis has also been carried out 
for a different set of randomized experimental data in McArdle and Prindle (2008) and for 
observational data in Grimm and McArdle (2007). 

discussion: studying longitudinal data with contemporary sem 

This analysis of longitudinal trajectories can be a great deal of fun for the eager analyst. 
One has an overwhelming sense that something useful, something special, could emerge 
from analyzing longitudinal data. After all, almost any longitudinal data collection takes a 
lot more time and effort than the more typical cross-sectional data collection. So, whether 
or not it is deserved, longitudinal analyses often take on a special importance. But, for very 
similar reasons, these analyses can be very difficult. Longitudinal analyses can be difficult 
to organize. It can be difficult to do something very simple and useful (such as plotting the 
data) and difficult to know when to stop with advanced analyses. To deal with these issues, 
I have placed SEM in the context of five goals suggested by Baltes and Nesselroade (1979). 
I suggest you consider what you or others have done within the context of the five steps 
outlined earlier; it is not necessary to carry them out in order, but it could be easier. Each 
step can build on the results from the previous steps. 

There are many motivations to use contemporary SEM for longitudinal analyses, 
and SEM has both benefits and limitations. Among many benefits, we can see a required 
clarity of process definitions, easy programming of complex ideas, clear tests of param
eter equivalence, and generally simple tests of otherwise complex ideas. A few of these 
SEM techniques even lead to novel ideas for data analysis, especially dealing with ordinal 
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measurements. Perhaps SEM path diagrams provide a clearer way to think about longitudi
nal analyses. Unfortunately, among many SEM limitations, we need large and representa
tive samples of persons for reasonable estimation, and we also need normal distribution of 
residuals (or uniquenesses) to create appropriate statistical tests. But, most important, we 
need to state what we want to examine about dynamic influences in advance of the data 
analysis. In this way any SEM requires the kind of clear thinking we have probably not yet 
achieved in behavioral sciences. In common practice, we get stuck using the SEM models 
in ways that are far simpler than is possible. That is, we seem to focus on issues 1, 2 and 3 
and rarely reach issues 4 and 5. 

Once again, the choice of a dynamic model is intimately tied to the substantive theory 
and the available data. The choice between using an autoregressive approach, a linear latent 
basis, or a polynomial or other nonlinear model can be substantively important. The initial 
idea from Wishart (1938) was that the basic shape of each individual curve could be captured 
with a small number of fixed parameters and random variance components. In some cases a 
fixed-basis polynomial model is more parsimonious than a free-basis model (see McArdle & 
Bell, 2000). But many recent textbooks overlook the latent-basis model (e.g., Duncan et al., 
2006; Singer & Willett, 2003), and this option remains a most useful empirical choice. 

One way to combine recent ideas about dynamics and retain the statistical and prac
tical benefits of SEM is to use a model based on the LCS (Hamagami & McArdle, 2000; 
McArdle, 2001; McArdle & Hamagami, 2001). Indeed, the introduction of individual differ
ences in change analyses has led to a great deal of statistical controversy in model fitting 
(e.g., Nesselroade & Cable, 1974; Sullivan, Rosenbloom, Lim, & Pfefferman, 2000). These 
kinds of “difference” or “gain” score calculations are relatively simple and theoretically 
meaningful, but the potential confounds due to the accumulation of random errors has been 
a key concern in previous studies using observed change scores or rate of change scores 
(e.g., Burr & Nesselroade, 1990; Rogosa & Willett, 1985; Willett, 1990). This recent SEM 
approach allows us to write expectations in terms of the first- or second- or higher order 
latent differences, and we can have the SEM program automatically generate the required 
nonlinear expectations of the scores. 

Practical problems in the fitting of any statistical model with longitudinal data begin 
with scaling and metrics. These ideas can be examined at the item level by forming a scoring 
system for any construct; we used concepts from item response theory (IRT) (see McArdle, 
Grimm, Hamagami, Bowles, & Meredith, 2009; McArdle & Hamagami, 2004). Additional 
scaling issues deal with the exact timing of observations (e.g., Boker & McArdle, 2005) 
and, as usual, transformations can change the statistical patterns. Optimal measurement 
collections are a major challenge for new empirical research and worthy of much further 
discussion (McArdle, 2010). 

The SEM analyses presented here make specific assumptions about latent changes in 
individuals and groups (as in McArdle & Prindle, 2008; Meredith & Tiask, 1990; Muthén & 
Curran, 1997). But the SEMs presented here were developed to be a reasonable match to 
the goals of longitudinal data analysis proposed by Baltes and Nesselroade (1979; Table 1). 
The representation of change processes can be accomplished using the variety of methods 
we have been referring to as latent curve, mixed effect, multilevel, or multiple-group model
ing. With this in mind, we need to be careful not to forget the important lessons of the past. 
At the same time, we do need to invent new ways to collect the optimal sets of data needed 
for powerful tests of hypotheses about development. These are among the most important 
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challenges for contemporary and future longitudinal research, and my hope is that some of 
the SEM ideas presented here can be useful in this work. 
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