
Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s
Preface

Over the past 20 years, there has been an incredible change in the size,
structure, and types of data collected in the social and behavioral sciences.
Thus, social and behavioral researchers have increasingly been asking the
question “What do I do with all of this data?” The goal of this book is to
help answer that question.
 With advances in data collection, there has been a corresponding expan-
sion in the understanding of the complexity underlying the relationships
between variables. Nonlinear effects and interactions are now regularly
posed as hypotheses, aided by larger sample sizes that afford adequate sta-
tistical power. Further, predicting an outcome with only a few covariates
of interest, while only assessing linear relationships, is now recognized as
severely limiting. While this approach was common in the past, due to
smaller dataset sizes and statistical software limitations, computer-assisted
data collection and new software have helped overcome such challenges.
 In the past, particularly in academic research, certain types of data were
only analyzed with specific types of statistical models such as analysis of
variance (ANOVA) and linear regression, which were closely aligned with
the theoretical motivation underlying the study. However, the advent of
novel data collection methods has resulted in new data types (e.g., text),
extracted from a variety of sources (e.g., brain imaging, social network), as
well as larger collections of traditional survey data. As a result, there is an
incredible degree of flexibility in the choice of algorithms. This complicates
modern statistical applications, as researchers and practitioners have to
contend with an additional dimension, specifically, “Which algorithm or
algorithms should I apply?” and “How does this algorithm align with the
theoretical motivations of my study?”
 It is our viewpoint that in social and behavioral research, to answer
the question “What do I do with all of this data?”, one needs to know the
latest advances in the algorithms and think deeply about the interplay of
statistical algorithms, data, and theory.
 An important distinction between this book and most other books in the
area of machine learning is our focus on theory. To address the interplay

vii

This is a chapter excerpt from Guilford Publications.
Machine Learning for Social and Behavioral Research.

Ross Jacobucci, Kevin J. Grimm, and Zhiyong Zhang. Copyright © 2023.
Purchase this book now: www.guilford.com/p/jacobucci

https://www.guilford.com/books/Machine-Learning-for-Social-and-Behavioral-Research/Jacobucci-Grimm-Zhang/9781462552924

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Prefaceviii

of machine learning, data, and theory (see Figure 1), we start with detailing
our perspective in Chapter 2 to address the question we often receive when
teaching classes or workshops on machine learning, namely: “Can machine
learning analyses be incorporated into my traditional confirmatory
research?” The follow-up question is often: “Given the exploratory nature of
machine learning, how can we be sure our results are trustworthy?” We
address this question specifically in Chapter 3 by providing details on a
number of cross-validation strategies that help prevent overfitting.
 One glance at the table of contents from any of the recently published
books on machine learning, data mining, statistical learning, data science,
or artificial intelligence reveals a dizzying array of algorithms not detailed
in traditional statistics textbooks. This book is different in a number of
ways. The first is our aforementioned focus on theory. While Chapter 1
provides an orientation to the book’s organization, the primary substance
of our book begins with a focus on theory (Chapter 2)—namely, how
machine learning fits into research that has traditionally been done from
a hypothesis-driven perspective. This is followed by a chapter (Chapter
3) on principles, specifically, how practitioners can apply machine learning
algorithms to produce trustworthy results. These chapters set the stage
for our discussion of algorithms for univariate outcomes (Chapters 4–6);
however, in contrast to other books, we focus largely on regularization
and tree-based methods. This better allows us to discuss the integration of
these algorithms with complex models that are commonly applied in social
and behavioral research, namely, latent variable models. This enables us to
provide additional detail on handling measurement error, an extremely
important component of survey data, longitudinal data analysis, and the
assessment of heterogeneity through the identification of subgroups. Mea-
surement is the focus of Chapters 7 and 8, followed by a discussion of mod-

Theory

Data

Theory

Algorithms
Data

FIGURE1. The complexity of modern data analysis necessitates a transition from
primarily focusing on the interplay of data and theory, to now understanding how
data, theory, and algorithms are integrated in practice.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Preface ix

eling longitudinal data (Chapter 9), and assessing heterogeneity (Chapter
10). Finally, we focus the last two chapters on alternative data types, with
an introduction to text analysis (Chapter 11), where we detail the processing
of text data and implementing commonly applied algorithms, and social
network data (Chapter 12), with an emphasis on network modeling.
 Chapters 1 through 6, 9, and 11 have been used as the primary source
material for an advanced undergraduate and graduate course. Further, this
book can be used as a supplementary reading for courses on regression,
multivariate, longitudinal data, and structural equation modeling, among
others. While Chapters 4 through 6 have considerable overlap with content
found in other books oriented toward supervised learning, Chapter 7 and
the subsequent chapters provide a more detailed/advanced account of
machine learning methodologies.
 Chapters pair a breadth in coverage of methodologies and algorithms
with a depth in focusing on fundamental topics, which are detailed at the
beginning of each chapter in a “Key Terminology” section to prepare readers
for the fundamental concepts of each chapter. Further, we end Chapters
3–12 with a “Computational Time and Resources” section that discusses
how to put each method into practice, denoting the key R packages that
can be used. Every application of machine learning detailed in this book
was programmed in the R statistical environment. While the book does
not detail R code, code for all analyses is provided on the book’s website.
Readers can apply this code to reproduce every example in the book.

Acknowledgments

Each author of this book became interested in machine learning because
of mentorship, collaboration, and friendship with John (Jack) J. McArdle,
who passed away before this book was completed. Jack was one of the
first psychological researchers who became interested in machine learning,
writing a host of papers and an edited book on the topic dating back to the
early 2010s. Jack provided the inspiration and motivation for each one of
us to pursue research in machine learning, spurred by his novel application
of machine learning to understanding attrition in longitudinal studies and
heterogeneity in longitudinal trajectories. Simply put, without Jack, this
book would never have been written.
 In addition, we would like to thank the helpful reviewers of the book
who guided us in the development of the manuscript. These reviewers were
initially anonymous, but they agreed to have their identities revealed now,
and we would like to thank them for their insightful feedback: Sonya K.
Sterba, Department of Psychology and Human Development, Vanderbilt
University; George Marcoulides, Mays Business School, Texas A&M Univer-

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Prefacex

sity; and Alexander Christensen, Department of Psychology and Human
Development, Vanderbilt University.
 Finally, we would like to thank the staff at The Guilford Press, particu-
larly C. Deborah Laughton, whose patience allowed the writing of this book
to continue through the COVID-19 pandemic.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s
5
Decision Trees

Decision trees are one of the core algorithms of machine learning, both
as an individual algorithm, as well as forming the basis for many more
complex algorithms (Chapter 6). Their primary benefit is the level of in-
terpretability afforded by the visually depicted tree structure along with
propensity to identify interaction effects without manual specification.
We spend the majority of this chapter focused on describing the tree
creation process and how to interpret the tree structure, while ending
with details on the specific implementations and nuances in application.

5.1 Key Terminology

• Decision tree. Also commonly referred to as classification and re-
gression trees, decision trees refer to an algorithm that recursively
partitions the predictor space to create a nonlinear mapping from
predictors to an outcome. The resultant mapping is then depicted as
an interpretable tree structure.

• Partition. The process of dividing the dataset into subgroups based
on predictor cutoff values.

• Heterogeneity. In contrast to homogeneity, heterogeneity refers to the
existence of between-person variability, namely, that assuming that
an entire sample represents a singular population is untenable.

• Node. A group of cases in a tree structure. The root node refers to the
entire sample that has yet to be partitioned, while the terminal node
is the final subgroup at the end of the partitioning process.

• Surrogate split. A split in the decision tree that does not show up
in the final tree as it did not produce as much of an improvement in
fit as the chosen split, but is used for cases with missingness on the
predictor used in the chosen split.

105

This is a chapter excerpt from Guilford Publications.
Machine Learning for Social and Behavioral Research.

Ross Jacobucci, Kevin J. Grimm, and Zhiyong Zhang. Copyright © 2023.
Purchase this book now: www.guilford.com/p/jacobucci

https://www.guilford.com/books/Machine-Learning-for-Social-and-Behavioral-Research/Jacobucci-Grimm-Zhang/9781462552924

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

106 Machine Learning for Social and Behavioral Research

• Pruning. The process of creating a large decision tree, followed by
pruning or removing splits to create a smaller, more generalizable
tree.

• Variable importance. A summary statistic for how much an indi-
vidual predictor contributes to explaining variability in the outcome.
This is used primarily as a way to understand which predictors are
important in algorithms (trees and ensembles; see Chapter 6) that are
not as interpretable as linear regression.

5.2 Introduction

Decision trees were first introduced in the 1960s by Morgan and Sonquist
(1963). However, the use of the method did not capture the attention of
the statistics community until 20 years later with the work of Breiman,
Friedman, Olshen, and Stone (1984). First termed automatic interaction
detection, the purpose of the algorithm was to efficiently identify interaction
effects when the number of predictors was large. In large datasets, the
sequential testing of a large number of models and possible combinations
of variables quickly depreciates the statistical properties of the models (i.e.,
false positives; Morgan, 2005).

As there are a number of variants to decision tree algorithms, we refer
to decision trees as the umbrella methodology, and refer to specific algorithms
that fall under this umbrella terminology as such. For instance, the most
popular variant of decision trees is classification and regression trees (CART;
Breiman et al., 1984). Note that classification and regression trees is also
commonly used to refer to decision trees, while CART refers to a specific
algorithm.

Decision trees’ popularity can be attributed to their easy-to-understand
tree structure, a structure that mimics the way that humans make deci-
sions. We elaborate on this further below. To create a tree structure, the
algorithm proceeds as follows: First, divide the predictor space into all
possible unique values. Across these unique predictor values, the algo-
rithm iteratively partitions the dataset to determine an improvement in
model fit. This involves placing each observation into one of two groups,
of which each group member receives the same predicted response. The
actual partitioning of the dataset functions differently based on the type
of each predictor variable. For quantitative variables, each unique value
is tested in order: For example, if predictor values range from 50 to 100,
the process is as follows: Everyone with a predictor value equal to 50 ver-
sus everyone with a predictor value greater than 50, then everyone with a

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 107

predictor value equal to 50–51 versus everyone with greater than 51, until
every possible successive value is tested in this manner. Given m unique
sorted values, this involves testing m − 1 unique splits. For nominal vari-
ables, as there is no ordering to the values, all possible groupings are tested.
If there are m categories, this involves testing 2m−1

− 1 dichotomous splits.
Particularly for predictors with large numbers categories, this can quickly
become computationally burdensome.

Predictions derived from the tree structure are then compared to each
observation’s actual response to calculate error (model misfit). For continu-
ous outcomes, this is generally mean squared error, for categorical it can be
accuracy or two alternatives, such as entropy or the gini index. After every
possible partition has been tested, and an error is calculated and assigned
to this specific partitioning, the split that results in the largest reduction in
error is chosen. Effectively, the algorithm has created two new datasets:
dataset A contains every observation that adheres to one side of the best
splitting rule and dataset B contains all other observations.

At its core, decision trees are an atheoretical method for creating sub-
groups. This assumes that identifying heterogeneity (creating subgroups)
with respect to the observations in the sample will explain some portion of
the outcome.

5.2.1 Example 1

To make the process of creating a tree structure more concrete, we use
data from the National Survey on Drug Use and Health, as was detailed
in the previous chapter. This dataset was split into a subset to have equal
proportions of the suicidal ideation (last 12 months; SUICTHINK) outcome, as
well as selecting cases that received questions about depression. Predictors
included variables that measure feelings of worthlessness (worthless; 1
for Yes), whether depression problems interfered with work or personal
life (interfere; 1-5, 5 = extremely), whether symptoms of depression are
felt everyday (dep; 1 = Yes), sex (1 = Female), age, and race. Note that
in contrast to the logistic regression analyses, it is not recommended to
dummy code categorical predictors. Instead, these should be treated as
nominal, as it is worthwhile to test a one-versus-all scheme for group
differences (as opposed to just a comparison to the reference group).

Decision trees first start with a root node, as displayed in Figure 5.1.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

108 Machine Learning for Social and Behavioral Research

FIGURE 5.1. The root node from the NSDUH dataset. No splits have occurred, as
every observation is treated as a homogenous sample. “0” refers to the predicted
response for each case in the node, 0.49 is the mean of the outcome, and 100%
denotes that the entire sample is contained in this node.

0
0.49

100%

For classification trees, the prediction for each observation reflects the
distribution of both classes, which in our example is 0.49, or 49% 0s. In
regression trees, this would be the mean of the outcome. In our example,
those with a history of suicide attempts (1) and those without a history (0)
are roughly distributed 50–50.

To create a first split, the algorithm tests all possible splits, according
to the rules dictated by the predictor variable types (which is important to
check the class of the predictors before creating the tree). This resulted in
the following split depicted in Figure 5.2.

Decision Trees 109

FIGURE 5.2. First split in the NSDUH dataset. The split occurs between the
values of 0 and 1 on worthless.

worthless = 0

0
0.49
100%

0
0.25
19%

1
0.55
81%

yes no

This split occurred between 0 and 1 on worthless, with those having
a value of 0 (19% of sample) receiving a predicted probability of suicide
attempt of 0.25. Note that this predicted probability is simply the class
proportion in each node (e.g., 25% of the sample in this node have 1s).
Similar to logistic regression, decision trees output predicted probabilities,
with class assignment dependent on the probability cutoff (generally 0.5).
Cases with a worthless value of 1 received a predicted probability of 0.55
(81%) of the sample. Now that we effectively have two subgroups of cases
based on worthless, the algorithm proceeds by trying to partition each
subgroup further. This results in the next set of splits is given in Figure 5.3.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

110 Machine Learning for Social and Behavioral Research

FIGURE 5.3. Second split in the NSDUH dataset. Cases with values of 1 on
worthless are further split between ages of 18–25 and older.

worthless = 0

age = 26−34,35−49,50−64,65 or older

0
0.49

100%

0
0.25
19%

1
0.55
81%

0
0.49
45%

1
0.63
36%

yes no

The next split occurs among the 81% of the sample with a value of 1
on worthless. The split, on age, partitions those whose age falls in the
category of 18–25 into one node, and those in the older age categories into
the other node. These nodes then receive different class predictions based
on their predicted probabilities. Note that those that were partitioned with
a response of 1 on worthless did not receive a further split. Although this
could be attributed to a number of aspects, the smaller sample size (19% or
190) could be partially accountable.

The next step of splitting occurred among those with worthless values
of 1 and in the older age categories, as displayed in Figure 5.4. This split
occurred between values of 1–3 and 4–5 on interfere. Those with values
of 1–3 mostly had outcome values of 0 (0.36), whereas the partition of cases
with values of 4 or 5 were approximately evenly split (0.53).

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 111

FIGURE 5.4. Example tree with four terminal nodes. The third split occurred
among those cases that are older than 18–25, between the values of 3 and 4 on
interfere.

In this final tree (we set the maximum depth to four), displayed in
Figure 5.5, a split occurs among cases that we just placed in the node with
interfere values of 4 or 5. Cases with age values of 50–64 or 65 or older
were partitioned from those that had age values of 26–49. Note that this is
the second split on age, with cases having an age of 18–25 already placed
in a terminal node. For the current split, it results in slightly different
predicted probabilities of a suicide attempt, with older individuals having
slightly lower probabilities (0.46 versus 0.55).

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

112 Machine Learning for Social and Behavioral Research

FIGURE 5.5. Final tree model. The final split occurred among cases with
interfere values of 4 or 5, occurring between the ages of 25–49 and 50 or older.

5.3 Describing the Tree

The steps taken to interpret the resulting subgroups can be described as a
set of rules, summarized in Table 5.1.

TABLE 5.1. Example Splitting Rules. Note that we could have alternatively in-
cluded their predicted probabilities, as this is closer to what decision trees attempt
to optimize.

Splitting Rule Prediction Probability

worthless = 0 0 0.25
worthless = 1 & age > 25 & interfere = 1-3 0 0.36

worthless = 1 & age > 25 & interfere = 4-5 & age > 49 0 0.46
worthless = 1 & age > 25 & interfere = 4-5 & age < 50 1 0.55

worthless = 1 & age =18-25 & age = 18-25 1 0.63

Now that we have a final decision trees model displayed as the rules
in Table 5.1 and Figure 5.5, we can be more explicit about the terminology
used to describe the tree. This is depicted in Figure 5.6.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 113

FIGURE 5.6. Terminology for each node.

In this figure, the first (topmost) node is termed the root node, while each
additional node that is then further split is referred to as an internal node.
Finally, those nodes that are not further split (bottommost) are referred
to as terminal nodes. We have already described the splitting functions
(rules) that dictate where people are placed. Note that there are alternative
terminologies used to describe the parts of the tree. One alternative is the
use of parent and child nodes, used in a relative way to describe splitting the
cases in the parent node that results in two child nodes. Lastly, the terminal
nodes care also referred to as the leaves of the tree

5.3.1 Example 2

The same process that can be used for decision trees and categorical out-
comes (classification trees) applies to continuous outcomes (regression
trees). To portray this and take it a step further in understanding the
mapping between predictor and response, we will use data from the ECLS-
K. For this example, we will use math and general knowledge scores to
predict science scores in the eighth grade. To get a better sense of the rela-

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

114 Machine Learning for Social and Behavioral Research

tionships between variables, Figure 5.7 is a scatterplot between math and
knowledge, where each point is colored by the science score.

FIGURE 5.7. Three variable scatterplot.

We can see that, in general, as both math and knowledge increase, so
does science. Although the relationship between knowledge and math
looks linear, we would have to plot the marginal relationships between
both math and knowledge with science to understand how a linear model
would work. Eschewing the linearity assumption using decision trees, with
math and knowledge as predictors of science scores, results in the structure
displayed in Figure 5.8.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 115

FIGURE 5.8. ECLS-K decision tree.

The next step in understanding what a tree structure depicts is to see
the binning as applied to the scatterplot in Figure 5.9. This is displayed in
Figure 5.7.

FIGURE 5.9. Decision boundaries.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

116 Machine Learning for Social and Behavioral Research

In this, we can directly map the binning of observations by their predic-
tor values and predicted responses. For instance, the group with cut points
of less than 25 on math and less than 16 on knowledge falls into Terminal
1, which occupies the lower left corner of Figure 5.9 and has a predicted
science score of 71.

To better understand how well this model fits the data, we also can
examine the residuals. The quantile–quantile plot of the standardized
residuals is displayed in Figure 5.10.

FIGURE 5.10. Decision tree Q–Q plot.

In this, we can see that for the most part, the model captures the data
well except for at high values of science. This can also be seen in Figure
5.10, where the top right partition has a large amount of variability to the
predictor values. Given this, we may need additional splits among those
with high values in both math and general knowledge. In comparison to
using a linear model, which results in the quantile–quantile plot in Figure
5.11, both models seem insufficient to capture the nonlinearity, indicating
that a larger tree may be necessary.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 117

FIGURE 5.11. Linear regression Q–Q plot

The linear model has difficulty in capturing observations at both the
high and low end of science responses. In examining the R2 for both the
linear model and decision trees, the decision trees model performs only
slightly worse, explaining 32.6% of the variance in comparison to 36.4%
for the linear model. To better understand how decision trees capture
nonlinear relationships, we first reran the analyses only using knowledge
as a predictor of science. The resultant tree, depicted in Figure 5.12, can
then be translated to the nonlinear function in Figure 5.13.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

118 Machine Learning for Social and Behavioral Research

FIGURE 5.12. Decision trees result only using knowledge.

FIGURE 5.13. Nonlinear decision trees prediction line.

10 20 30 40

40
60

80
10

0

knowledge

sc
ie

nc
e

In this figure, we see that the group with the lowest predictions for
science act as a form of intercept for the model. From here, as knowledge
increases, predicted science scores increase according to a step function,
with steps located at the cutoffs in the actual tree structure. With more than

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 119

one predictor, it becomes more difficult to visualize this relationship. Going
back to our original tree, using both knowledge and math as predictors,
we can view this step function in three dimensions, as displayed in Figure
5.14.

FIGURE 5.14. Three-dimensional decision surface.

For this predicted surface, we see abrupt changes at coordinates that
correspond to the cutoffs in the tree structure. If we grew an even larger
tree with both of these predictors, we could image a much more uneven
surface.

5.4 Decision Tree Algorithms

Under the umbrella of decision trees fall a number of different algorithms
that create tree structures, albeit in different fashions. Although this could
in and of itself, be a book, we only provide a general introduction of two
algorithms that are available in R.

5.4.1 CART

The term decision trees often refers to the use of classification and re-
gression trees, denoted as the overarching methodology, classification and
regression trees (CART; Breiman et al., 1984), and refers to a specific algo-
rithm that falls under the umbrella of decision trees. CART creates binary
splits between ordered or unordered predictor categories in order to reduce
impurity (heterogeneity). This creates more homogenous groups of obser-
vations with respect to the predicted classes. The CART algorithm creates

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

120 Machine Learning for Social and Behavioral Research

trees in a greedy fashion, where at each level of the tree, the split that re-
duces impurity the most is chosen, with no consideration to splits occuring
farther down the tree. After the first split (root node), the covariate space
is recursively split further until there is no longer an improvement greater
than some threshold in the model fit.

Oftentimes this tree structure fits the data too well (overfit), meaning
that parts of the tree structure are unlikely to generalize well to alternative
samples. One strategy to overcome this propensity is to prune the initial
tree back to a smaller size. CART is one of the most popular implementa-
tions and inspired a host of future implementations that were variants of
the original methodology. One of these is the rpart package (Therneau,
Atkinson, & Ripley, 2015).

5.4.2 Pruning

In choosing a final model, it is common to build a large tree, and then
prune back the tree to select a subtree, or a smaller version of the tree
that minimizes the cross-validation error. This is done in order to prevent
"missing" an important additional split (see Breiman et al., 1984) Note that
the largest tree will always have the lowest within-sample error. However,
we generally want to choose the tree structure that will generalize the best.
This can be accomplished by choosing the model with the lowest average
error using k-fold cross-validation (or bootstrapping).

Oftentimes when creating a tree, the tree structure can be larger than
is practically interpretable, that is, the size of the tree compromises the
generalizability. To test this, we first create a tree without attempting to
control the size of it, then proceed to prune back the leaves to create a series
of submodels (subtree). In pruning, the initial tree is pruned back based on
the performance of a complexity parameter (α) that controls the size of the
tree. The cost-complexity measure is

Rα(Tp) = R(Tp) + αsp, (5.1)

where R(Tp) is the error, and sp is the number of leaves (terminal nodes) for
tree Tp (Breiman et al., 1984). When α = 0, then we have the original tree
structure. In testing a sequence of increasing values of α, the models incur
larger and larger penalties, thus creating successively smaller subtrees.
Although the fit of each of the subtrees will be worse on the training data
in comparison to the original tree T0, we would expect better fit according
to cross-validation, or with assessing the fit on a test set.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 121

Going back to Example 1 and running the CART algorithm separate
from the process described, we get the following tree sizes and errors
according to different metrics depicted in Table 5.2.

TABLE 5.2. Table of Complexity Parameters and Fit From Example 1

CP Splits Sample Error Avg. CV Error CV Error Std.
1 0.17 0.00 1.00 1.00 0.03
2 0.03 1.00 0.83 0.83 0.03
3 0.02 3.00 0.77 0.84 0.03
4 0.01 5.00 0.74 0.82 0.03
5 0.01 6.00 0.73 0.83 0.03

Although the Sample Error decreases with increasingly larger trees, the
Average CV Error decreases dramatically, at first going from a tree with no
splits to one split, but then remains consistently in the range of 0.82–0.84
with additional splits. An additional mechanism for understanding cross-
validation and the effect of pruning trees is to examine the performance
on a separate holdout sample. To demonstrate this process we used the
ECLS-K data, this time predicting reading achievement in grade 8. The
sample was split into both a train and test set. For each tree, we recorded
the fit on the train set, the average fit across the 10 CV folds, and on the test
set. This is displayed in Figure 5.15.

FIGURE 5.15. Comparing three forms of assessing fit.

First we examine the fit on the training sample, and we see that as
the tree gets larger (Nsplit), the amount of misfit declines monotonically.
In contrast, assessing misfit with CV and on the test sample results in a

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

122 Machine Learning for Social and Behavioral Research

different conclusion. For both, the misfit declines until a tree size of three
splits, and then either only increases in the case of CV or finds another
low point at six splits for the test sample, before increasing at larger tree
sizes. Using CV we get additional information in the form of the standard
deviation of the calculated misfit across the 10 folds. We can use this
information to examine how much improvement in fit occurs by comparing
trees. For instance, although the lowest misfit was achieved at three splits,
we can see considerable overlap of the error bars between the two adjacent
tree sizes. Similar to the use of the standard deviation of fit using CV in
regularized regression, we could also choose the smallest tree within one
standard deviation (standard error) of the minimum misfit. This would
lead us to choosing the tree with only one split.

5.4.3 Conditional Inference Trees

Conditional inference trees (CTree; Hothorn, Hornik, & Zeileis, 2006) are
based on a general theory of permutation tests, by performing a hypoth-
esis test at each node resulting in a p-value criterion to help determine
whether the tree should stop or keep growing. Using a permutation test to
calculate a p-value entails comparing a split on the original sample to one
using that same split on randomly shuffled response values (e.g. swapping
observation 1s and 2s responses). Once completed many times, a p-value
for the conditional distribution of tests statistics is calculated. This allows
for unbiased variable selection as each p-value was calculated based on a
partial hypothesis. This in effect controls for the scale of each covariate,
overcoming the propensity for CART to select variables with larger num-
bers of response options. As an additional feature that is different than
CART, by using a p-value to test each split, it negates the use of pruning, as
it attempts to control for false positives (splits on noise variables) during
the tree construction process.

This algorithm is implemented as the ctree() function in the partykit
package (Hothorn & Zeileis, 2015). The default for the p-value criterion is
0.05 (expressed as 0.95, or 1-p), although this can manually be altered or
tested as a tuning parameter using the train function in the caret package
(Kuhn, 2008). In practice, the trees created by CTree tend to be overly large,
making interpretation difficult. Although one could change the p-value
threshold to something smaller (e.g., 0.01), a new algorithm was proposed
that attempts to control the size of the tree without missing important ef-
fects, particularly interactions. This algorithm, termed CTreePrune
(Alvarez-Iglesias, Hinde, Ferguson, & Newell, 2016), proceeds by first
growing a large, saturated tree using CTree by setting a large (0.999) p-
value criterion. Once a saturated tree is created, the algorithm proceeds

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 123

bottom up, recalculating each p-value based on a false discovery rate proce-
dure (Benjamini & Hochberg, 1995), an alternative method for controlling
familywise error rate. This newly proposed algorithm is implemented in
the dtree package (Jacobucci, 2017).

5.5 Miscellaneous Topics

5.5.1 Interactions

In linear regression (or other types of regression), it is common to manu-
ally enter two-way interactions if it is hypothesized that the effect of one
variable may depend on the values of another variable. In Chapter 4,
we discussed atheoretical approaches to identify linear interactions in the
presence of no a priori hypotheses. As already mentioned, decision trees
automatically searches for and includes interactions into the resultant tree
structure. Despite this, some confusion exists as to what exactly constitutes
both a main effect and interaction in a tree structure (see Strobl, Malley, &
Tutz, 2009).

An example that uses two variables for splitting and represents two
main effects is displayed in Figure 5.16. In the left-hand panel, the first
split occurs between males and females. Then within each gender, the
same split occurs on depression, resulting in the same predicted increase
in the terminal nodes. Examining each internal and terminal node shows
that each split results in a four-point increase in the resulting subgroup
in comparison to the combined observations. In contrast to this, the right
hand side of Figure 5.16 represents an interaction between gender and
depression. Notably, the split on depression depends on the value of gender.

We can visualize this further with three-dimensional plots of the rela-
tionship between both predictors and anxiety. In the left panel of Figure
5.17, the slope of the prediction surface stays constant across values of de-
pression and gender. In contrast, the right side of Figure 5.17 represents an
interaction, denoting different effects across the values of both depression
and gender. Notably, there is less slope at moderate values of depression,
with stronger slopes at both lower and higher values.

In most applications of decision trees, the resulting tree structure will
reflect interactions between variables. Particularly with continuous predic-
tors, it is highly unlikely in real data to see the exact same cut-point reflected
multiple times in a tree. Additionally, as compared to linear regression,
where researchers must manually enter interaction effects, decision trees
place no constraints on the interaction effect, while automatically including

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

124 Machine Learning for Social and Behavioral Research

FIGURE 5.16. Comparison of tree structures with main effects and an interaction.

FIGURE 5.17. Comparison of tree structures with main effects (left pane) and an
interaction (right pane).

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 125

the possibility of interacting effects among predictors. Thus, in line with
Berk (2008) most splits represent interactions in decision trees.

5.5.2 Pathways

Beyond just identifying main and interaction effects present in the trees,
trees have also been used to describe the various pathways that cases can
take to end up receiving similar predictions. More formally, we can describe
this as equifinality and multifinality, following Scott, Whitehead, Bergeman,
and Pitzer (2013). In the context of data analysis and tree models, equifinality
refers to cases having different responses on predictor variables, but similar
values on the outcome. On the other hand, multifinality refers to cases
having similar values on predictor variables, but different outcome values.

As an example of how both of these concepts can be represented in a
tree structure, see the tree displayed in Figure 5.18.

FIGURE 5.18. A tree structure demonstrating equifinality. Notice that the interac-
tion between math and knowledge results in Nodes 4 and 6 with similar distribu-
tions on the outcome, despite different pathways.

Note that for this we used the CTree algorithm, which results in a
different form of output. In this example, we used a subset of the ECLS-
K data, with math and knowledge scores as predictors of science scores.
In this, examine Node 4 and 6. Node 4 contains cases that had lower
knowledge scores (< 25.7), but higher math scores (> 28.63) relative to those
that ended up in Node 3. Node 6 contains cases that had higher knowledge

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

126 Machine Learning for Social and Behavioral Research

scores, but not the highest (≤ 35.5). Even though the observations that
ended up in Nodes 4 and 6 had different paths, as in splits on both math
and knowledge, both groups had very similar expected science scores as
evidenced by the boxplot in each node. This could be attributed to a higher
math score having a compensatory effect that makes up for slightly lower
knowledge scores.

Multifinality is more difficult to define in terms of a tree structure.
Decision tree algorithms explicitly attempt to identify group differences on
the outcome, with respect to the predictors in the model. Instead, one can
identify subgroups that have very similar values on multiple predictors,
but a split on an additional variable results in a discrepancy in outcome
predictions. An example of this can also be seen in Figure 5.18, through
examining Node 3. Notice the variability within this subgroup of cases,
where the whiskers of the boxplot reach above values of 100 and down to
values of 40. Part of this could be attributed to the fact that the splits on
both knowledge and math do not fully determine, or cause, science values,
hence the degree of uncertainty or variability in each terminal node.

One caveat with regard to describing the tree as resulting in pathways
of observations is what we discuss later in the section on stability. Use of
this level of description of the tree structure should be accompanied by a
healthy dose of skepticism regarding this structure as "optimal." Addition-
ally, just because a decision trees algorithm results in splits does not denote
a magnitude of effect. To understand this more broadly, one needs to pair
explanation with prediction, or describing model performance. This will
be touched on in more depth later in the chapter, however, with the tree
in Figure 5.18, the predictions from the four resultant subgroups explained
37% of the variability in science. Although far from explaining most of the
variance, this might represent an important contribution, depending on
performance relative to other methods (linear or lasso regression) or based
on results reported in the research area of application.

5.5.3 Stability

The principle criticism of decision trees is that they are unstable (Breiman,
1996b). This instability occurs when small changes in the dataset produce
large changes in the fit of the model (Breiman, 1996b). Instability makes
the choice of the final model more difficult, while also imparting doubt into
the generalizability of the results, particularly in comparison to a method
that produces more stable results. Much of the cause for concern for the
instability of decision trees can be attributed to their reliance on binary
splits. Problems caused by binary classification is not unique to decision
trees. For instance, in mental illness diagnosis, low reliability in rater

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 127

disagreement on whether an individual has a disorder or not can be mostly
attributed to difficulties in applying categorical cutoffs to disorders that
are dimensional in nature (e.g., Brown, Di Nardo, Lehman, & Campbell,
2001). In contrast to comparing whether an individual is diagnosed with a
form of schizophrenia or not, low stability (reliability) with decision trees
manifests itself as disagreement in the tree structure across datasets that
use the same variables.

Example

To make the concept of (in)stability more concrete, we will use the
Holzinger-Swineford dataset from the lavaan package (Rosseel, 2012).
With this dataset, we created three trees using the rpart package, one on
the first 100 respondents, one on the second 100 respondents, and finally
on the entire sample (N=301). The resulting tree structures are displayed
in Figures 5.19 to 5.21.

FIGURE 5.19. Tree created using first 100 HS observations.

In Figures 5.19 to 5.21, we capture vastly different ideas about what pre-
dictors are most important, as well as the functional relationships between
the selected predictors and the outcome. The first tree used two variables,
x5 and x2, while the second tree also used two variables, x2 and x3, and split
twice on x3. Finally, in the tree created on the entire sample, a new variable
was used, x4, along with x2 and x3. Note that although x2 was used in
each of the three trees, each time was a different cutoff (5.875, 6.125, 7.375).
Part of this problem can be attributed to the use of continuous variables as

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

128 Machine Learning for Social and Behavioral Research

FIGURE 5.20. Tree created using second 100 HS observations.

FIGURE 5.21. Tree created using the entire HS sample (N=301).

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 129

predictors, as there are more possible splits in comparison to an ordinal or
nominal variable in most cases.

It is important to note that variability in model estimates is not unique
to decision trees, as a similar process can occur with linear regression,
although not to the same extent. In Table 5.3 are the results from applying
linear regression to the same three datasets.

TABLE 5.3. Linear Regression Coefficients across the Subsamples of the
Holzinger-Swineford Dataset

First 100 Second 100 Full Sample
Variable β p β p β p

(Intercept) 7.15 .001 7.27 .001 6.83 .001
x1 0.01 .83 .02 .74 .03 .36
x2 0.02 .53 -.03 .48 .03 .22
x3 -0.02 .60 .19 .001 .03 .31
x4 0.09 .15 .09 .12 .06 .11
x5 -0.09 .09 -.02 .75 .02 .50
x6 0.04 .61 -.11 .09 -.02 .63

Although there is some variability to the parameter estimates across
the three models, notably with x4 denoted as a significant predictor only in
the second sample of 100, for the most part, our conclusions stay the same.
However, when we add variable selection to the process, our conclusions
can vary greatly. Adding backward selection to choose which variables
should be in the model (using the Akaike information criterion to choose
a final model), we get additional uncertainty. In the first sample, variables
x4 and x5 are chosen, in the second sample x3, x4, and x6, while in the full
sample x2 and x4. As we can see here, it is the act of variable selection and
dichotomous cutpoints that induce instability into the resulting models,
not just the use of binary splits for decision trees.

Although there have been many suggestions for overcoming the insta-
bility of decision trees, the method that has generated the most research is
that of bootstrap aggregating (bagging; Breiman, 1996a). The general idea
is that instead of creating one tree, many (hundreds or thousands) are cre-
ated on bootstrapped samples taken from the original dataset. This topic
will be the focus of the following chapter, along with extensions of this
concept. The main drawback is that although the creation of a host of trees
makes the results more stable, we no longer have a single tree structure to
interpret. Because the goal of many research projects is the creation of a
single, interpretable tree structure, our focus for the rest of the chapter is
only on methods that address stability, while resulting in a single tree.

As a more practical solution, when entering variables as predictors in
decision trees, researchers should first determine the level of granularity

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

130 Machine Learning for Social and Behavioral Research

of interest in splitting these variables. In some research domains, creating
a cutoff between values of 7.345 and 7.346 may be of interest, in others,
much less so. If three decimal places is not of interest, then rounding the
predictor values will increase the potential for creating stable trees, along
with the benefit of decreasing computational time.

To understand the degree of (in)stability to a tree structure, we recom-
mend the use of repeated bootstrap or subsample sampling to determine
possible structures. This has been implemented in the dtree package with
the stable() function. Additionally, we recommend pairing decision trees
analyses with those from either boosting or random forests, methods that
will be covered in the following chapter. Both of these methods create
hundreds or thousands of trees, allowing researchers to further examine
whether variables used in a singular tree structure are also consistently
used when this process is repeated.

As an example of repeatedly creating tree structures, we used thestable
function on the ECLS-K example with both math and knowledge as predic-
tors of science scores. In this, we compared the use of linear regression to
the CART and CTree algorithms. Linear regression was used to compare
performance using CV, while both CART and CTree can be compared with
respect to stability and other metrics.

TABLE 5.4. Stability Results from the ECLS-K Example

nodes nvar nsplits RMSE CV R2 CV
lm - - - 11.75 0.37

rpart 15.42 (4.4) 2.00 14.42 11.51 0.39
ctree 22.67 (9.4) 2.00 21.67 11.48 0.40

Some of these results are displayed in Table 5.4. Using 100 bootstrap
samples, and 10-fold cross-validation to assess performance on each boot-
strap sample, we can see that both decision trees algorithms outperformed
linear regression. This gives us some degree of confidence in the utility of
nonlinear relationships in examining this set of predictors and outcome.
Next, each tree structure was compared to every other across both algo-
rithms to assess stability. Even with rounding cutpoints to the nearest
decimal place, each tree structure was unique. This can partly be attributed
to the large trees, with an average number of nodes equal to 15.4 and 22.7
for CART and CTree, respectively.

The fact that both predictors are continuous makes the uniqueness of
each tree structure more likely. Going back to Figure 5.13 and examining
the predictions for just the knowledge variable, one can imagine why this
level of instability occurs. With random sampling fluctuations, the predic-

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 131

tions for each decision trees structure will vary slightly based on how the
bootstrap sample varies.

The purpose of this demonstration is not necessarily to dissuade re-
searchers from the use of decision trees, but instead to impart a degree of
skepticism with regards to the optimality of a single tree. Instability is not
necessarily problematic for inferences within the sample, but instead for
the assumption that a tree structure derived on this sample is likely to be the
same or highly similar to a tree structure created on an alternative sample.
Instead, each tree structure should be interpreted with some apprehension,
as alternative structures exist that may represent the data just as well.

5.5.4 Missing Data

Significant research exists that evaluates various strategies for handling
missing data in decision trees (e.g., Ding & Simonoff, 2010; He, 2006).
Some decision tree methods have options for using surrogate splits in the
presence of missing data. Surrogate splits work in the following way. After
a primary split is found for a given node, surrogate splits can be found
by reapplying the partitioning algorithm to predict the binary primary
split. For example, if the primary split on education is between ≤ 12 and
> 12 years and greater than 12, then this new binary variable becomes the
outcome, with the remaining variables used as predictors. Those variables
that perform best in predicting the primary split are retained (default is
five in rpart) and used for those cases that had missing values on the
primary split variable. In the example detailed earlier, if cognitive score is
the first surrogate variable, with splits between high (predicted > 12 years
of education) and low values (< 12 years of education), then those with
high values on cognitive score (and missing on education) would be given
predicted values of > 12 years of education in the tree.

The use of surrogate splits is implemented in both the rpart and
partykit packages, however, in partykit, surrogate splits is only im-
plemented for cases when both variables are ordered. If researchers wish
to use the CART algorithm, then we recommend the use of surrogate splits.
However, with other decision trees algorithms, multiple imputation may
be the only option for handling missingness. Unfortunately this does not
result in a single tree structure, however the K trees, where K is the num-
ber of imputations, could be used for high-level inferences, such as which
variables were split on and where, as well as the stability of the results.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

132 Machine Learning for Social and Behavioral Research

5.5.5 Variable Importance

Similar to linear regression, high correlations among covariates presents
problems for decision trees. In the tree building algorithm, at a given split
two collinear variables may produce almost identical improvements in fit,
but only one can be chosen for a given split. This is analogous to the
idea of masking, but in the case of decision trees, it results in one of the
variables either not being split on at all, or lower in the tree. To quantify
how influential a variable is in predicting the outcome variable, one can also
calculate the variable importance metric for a given tree. These alternative
splits can be used to calculate how much improvement in fit would have
occurred for a given variable if the split was chosen. This allows us to
quantify the importance of a variable even if it was not split on in the tree.
Although there are various ways to calculate this, which is not limited to
decision trees, the rpart package creates an overall measure of variable
importance that is the sum of the fit improvement for all splits of which it
was the primary variable (i.e., in the tree), plus for the improvement in fit
(adjusted for improvement above baseline) for all splits in which it was a
surrogate (Therneau & Atkinson, 1997).

As an example, we used the ECLS-K dataset to create an additional
tree. Using both general knowledge and math as predictors of eighth-
grade science, we added a third variable, which we created by duplicating
each observation’s math score and adding a small amount of noise. This
simulated math score had a correlation of 0.95 with the original math score.
We expected that this would result in only one of the math variables being
selected in the tree, but that the variable importance should show roughly
similar values for each math score. The resultant tree is displayed in Figure
5.22.

As expected, one of the math scores was not used in the tree (the sim-
ulated math score). However, the variable importance metrics were as
follows: 39 for math, 33 for knowledge, and 28 for the simulated math
score. Note that the variable importance metric is scaled to add up to 100.
Despite not showing up in Figure 5.22, the simulated math score receives
an importance score that is nonzero. This metric should not be interpreted
to too high of precision, as there are only so many splits in a tree, making
it difficult to fully account for each variable’s importance. In general, only
the relative ranking of variables should be interpreted with respect to im-
portance metrics (Strobl, Malley, & Tutz, 2009). In the next chapter, we will
build variable importance metrics that are much more robust, as we are
using hundreds, if not thousands, of trees to average each variable’s effect.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 133

FIGURE 5.22. Tree structure with collinear variables.

5.6 Summary

Decision trees require researchers to make a fundamental shift in the way
they interpret results, namely, in that the mapping between predictors
and an outcome can be visualized and not reliant on understanding slope
coefficients in regression models. Instead, interactions are automatically
tested and can be visualized in a number of ways. Although decision
trees can in many cases produce more theoretically informative results in
comparison to generalized linear models, there are a number of drawbacks
to decision trees. Below we detail some of the main points that characterize
the advantages and disadvantages of decision trees.

Advantages:

• Are robust to outliers—single misclassifications don’t greatly influence
the splitting.

• Perform variable selection.

• Generally result in easy-to-interpret tree structures.

• Automatically include interaction effects.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

134 Machine Learning for Social and Behavioral Research

Disadvantages:

• Instability.

• Collinearity presents problems.

• Relatively lower predictive performance.

Just as researchers need to understand the assumptions of linear models,
and in what situations these models may not be appropriate, we urge
them to not just turn a blind eye and believe that decision trees represent a
panacea. As we have noted, there are some research contexts for which tree
structures are not appropriate, and there are underlying assumptions that
can be violated. Decision trees should instead be viewed as complementary
to the use of linear models, and in most cases we recommend using both
methods to compare and contrast the different theoretical conclusions that
the results represent.

5.6.1 Further Reading

• For further discussion on the instability of decision trees and how to
assess them, see Philipp, Rusch, Hornik, and Strobl (2018).

• A number of tutorials have been written on the use of decision trees
for various disciplines. Two that we recommend include King and
Resick (2014) and McArdle (2012).

• One topic that was not discussed was the use of decision trees in a
number of applications as a model for imputing data and for creating
propensity scores. See Lee, Lessler, and Stuart (2010) for an evaluation
of the use of trees for creating propensity scores, and Carrig et al.
(2015) for imputing when datasets are to be integrated.

5.6.2 Computational Time and Resources

Relative to the algorithms that comprise the following chapter, decision
trees are relatively quick to fit, even when paired with cross-validation or
the assessment of stability. Similarly to regularized regression, decision
trees often take on the order of seconds or a few minutes to fit. The runtime
is mainly influenced by the number of predictors, and number of possible
cutpoints on each predictor. Predictors that are continuous and contain a
large number of unique values, along with predictors coded as nominal
(requiring one vs. all comparisons), can drastically increase the runtime.

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

Decision Trees 135

In this chapter, we covered two of the most commonly used R packages
for decision trees: rpart and partykit. Many additional packages are
available, either ones that implement quite similar algorithms, such as
the tree package (Ripley, 2023), or ones that were developed with novel
splitting procedures, such as the evtree package (Grubinger, Zeileis, &
Pfeiffer, 2014). Further, while the rpart package is restricted to binary or
continuous outcomes, a number of packages have been developed to extend
the fundamental tree algorithms to cover alternative outcome types, such
as the rpartOrdinal package (Archer, 2010). Finally, while most packages
also contain functions for plotting the resultant trees, a number of additional
packages were built specifically to improve the visualization of trees. The
partykit package allows for plotting rpart trees in the same manner as
ctree() trees, while rpart.plot package (Milborrow, 2022) drastically
improves the quality of plots from rpart trees.

Copyright © 2023 The Guilford Press.
No part of this text may be reproduced, translated, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, microfilming, recording, or otherwise, without written permission
from the publisher.
Purchase this book now: www.guilford.com/p/jacobucci

Guilford Publications
370 Seventh Avenue
New York, NY 10001

212-431-9800
 800-365-7006

www.guilford.com

Cop
yri

gh
t ©

 20
23

 The
 G

uil
for

d P
res

s

https://www.guilford.com/books/Machine-Learning-for-Social-and-Behavioral-Research/Jacobucci-Grimm-Zhang/9781462552924
https://www.guilford.com/

