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structural equation modeling (SEM) is a general 
statistical approach to modeling the mechanisms pre-
sumed to give rise to observed variability, covariation, 
and patterns in data. These mechanisms typically are 
of theoretical interest, though they may also include 
methodological and artifactual mechanisms. Although 
the data to which these mechanisms are presumed rel-
evant are observed, models may include mechanisms 
that are unobserved, or latent. For this reason, SEM 
has been referred to as latent variable modeling. The 
primary data for many uses of SEM are covariances, 
which explains why SEM has also been referred to as 
covariance structure modeling. And the intent of many 
uses of SEM is to model putative causal effects be-
tween variables, explaining why SEM is sometimes 
referred to as causal modeling. Regardless of the label, 
the set of statistical methods referred to as SEM in this 
book offers a comprehensive and flexible approach to 
evaluating models of theoretical and methodological 
interest to researchers in the social and behavioral sci-
ences.

As evidenced by the number of topics included in 
this second edition of the Handbook that were not in 
the first edition, SEM is an evolving and expanding 
statistical approach. Although the core capabilities of 
SEM have been well established since the early 1970s 
and generally accessible to researchers since the early 

1980s, new capabilities are being developed and incor-
porated into computer programs for SEM analyses with 
regularity (see Matsueda, Chapter 2, for an informative 
history of SEM). These emerging capabilities coupled 
with powerful and intuitive computer programs for 
implementing them have spurred phenomenal growth 
in the amount and diversity of SEM usage. This thor-
oughly revised and updated Handbook is a response 
to that growth. The goal of this book is to provide de-
tailed coverage of SEM, beginning with foundational 
concerns and moving through an impressive array of 
modeling possibilities.

In this opening chapter, I provide a brief introduction 
to SEM that also serves as an overview of the book. I 
begin by discussing the relation between SEM and sta-
tistical methods with which many readers new to SEM 
will be familiar. I then provide a brief description of 
the basic logic of SEM as it typically is used in the so-
cial and behavioral sciences. The heart of the chapter is 
the presentation of an implementation framework that 
serves as both context for the remainder of the chap-
ter and an outline of the first part of the book. In the 
final section of the chapter, I offer a high-level view of 
data and models for which SEM can be profitably used 
and point the reader to chapters in the second and third 
parts of the book that offer detailed descriptions and 
demonstrations.

CHAPTER 1
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4  I .  F o u n d a t I o n s

SEM IN RELATION TO OTHER 
STATISTICAL MODELS

As a linear model used primarily to model relations 
between variables, SEM is not unrelated to narrower 
and more familiar statistical models such as analysis of 
variance (ANOVA), multiple regression analysis, and 
principal factor analysis. Indeed, any of these analy-
ses could be accomplished, and would yield identical 
results (assuming use of the same estimator, e.g., ordi-
nary least squares), using SEM. As such, SEM can be 
described as, in part, a generalization, integration, and 
extension of these familiar models.

Consider, for example, tests involving means. In the 
most limited case, a single mean estimated from a sam-
ple is compared against a population value, often zero, 
and the difference tested for significance. This test can 
be usefully generalized to the situation in which both 
means are estimated from samples, which may be in-
dependent or dependent; alternatively, the means may 
come from two observations of the same sample. The 
same comparison could be made using ANOVA, which 
offers the additional benefit of allowing for both more 
than two means and means generated by more than one 
factor. The number of levels a factor might reasonably 
take on in ANOVA is relatively small, making it un-
suitable for independent variables measured on a con-
tinuous or quasi-continuous scale such as survey items. 
Multiple regression analysis can accommodate both 
traditional ANOVA factors and quantitative measures 
that take on many values; thus, it has all the capabilities 
of ANOVA and more. Although both ANOVA and mul-
tiple regression analysis can accommodate multiple de-
pendent variables, they are limited in how the relations 
between those variables can be specified. Furthermore, 
a variable can be either an independent or a dependent 
variable, but not both. SEM can accommodate both an-
alytic situations. For instance, a set of variables might 
be used to predict a pair of outcomes that are corre-
lated, uncorrelated, or related in such a way that one 
is regressed on the other. In the latter case, one of the 
dependent variables is also an independent variable be-
cause it is used to predict the other dependent variable. 
The use of SEM to compare means when one or more 
assumptions of ANOVA are not met (e.g., homogeneity 
of variance) is the topic of Chapter 21 (Thompson, Liu, 
& Green), which shows how ANOVA is a special case 
of SEM.

An alternative path to SEM that highlights addition-
al capabilities begins with the zero-order correlation 

coefficient, which indexes the nondirectional associa-
tion between two variables. The degree to which that 
association can be attributed to a common influence 
can be evaluated using partial correlation analysis, as-
suming the putative influence has been measured. In 
the case of three or more variables, this logic can be 
extended to consider common influences that are not 
measured using factor analysis. The traditional fac-
tor analysis model is referred to as exploratory factor 
analysis (EFA) because those influences, even in the 
presence of well-developed hypotheses, are not speci-
fied a priori. More an inconvenience than a limitation 
is the fact that an infinite number of factor scores can 
be derived from the parameters (factor loadings and 
uniquenesses) estimated by EFA (Steiger & Schöne-
mann, 1978; see Devlieger & Rosseel, Chapter 17, for 
coverage of SEM analyses using factor scores). Finally, 
EFA requires that uniquenesses be uncorrelated. Fac-
tors in the context of SEM have traditionally been re-
ferred to as latent variables and are modeled in a more 
flexible, mathematically defensible manner that allows 
for a wide array of models that could not be evaluated 
using EFA. Applications of SEM that focus exclusively 
on the relations between latent variables and their in-
dicators are referred to as restricted factor analysis or, 
more commonly, confirmatory factor analysis (CFA) 
(Brown, Chapter 14). Both labels are apt because it is 
the restrictions that CFA requires that make it confir-
matory (i.e., subject to statistical testing). Conditional 
on appropriate restrictions (illustrated below), CFA 
permits specification and testing of a wide array of 
factor models including models with patterns of load-
ings nearly identical to those in rotated EFA solutions 
(Morin, Chapter 27).

Although each of these generalizations of basic sta-
tistical models is impressive in its own right, it is the 
integration of the two that constitutes the core strength 
of SEM. The traditional approach to integrating mul-
tiple regression analysis and factor analysis involves 
factoring a set of indicators of one or more predictors 
and outcomes, generating factor scores or creating unit-
weighted composites of the highest-loading indicators, 
then using these variables as predictors or outcomes. 
SEM allows for these two components of the integrated 
analytic strategy to be achieved simultaneously; that 
is, the relations between indicators and latent variables 
and the relations between latent variables are examined 
in a single model.

This integration of regression analysis and factor 
analysis is illustrated in Figure 1.1. The model is one 
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1. Structural Equation Modeling  5

in which an outcome, Y, is regressed on a predictor, X. 
Y is operationally defined by three observed variables, 
y1, y2, and y3, and X by four observed variables, x1, x2, 
x3, and x4. The observed variables, presumed to be fal-
lible indicators of the latent variables, could be survey 
items, total scores on different instruments designed to 
measure X and Y, behavioral observations, or physical 
characteristics. Regardless of how the values on the in-
dicators were obtained, it is assumed that x1 to x4 share 
in common their reflection of construct X but not Y and, 
conversely, y1 to y3 reflect construct Y but not X (i.e., 
there are no cross-loadings). In order to estimate the 
effect of X on Y using regression analysis, composite 
scores would need to be produced, perhaps by summing 
x1 to x4 and y1 to y3 or, if the indicators were on differ-
ent scales, standardizing scores and taking a mean. As 
illustrated in Figure 1.1, the regression portion of the 
model involves only latent variables, designated by the 
larger ovals. These are unobserved forms of X and Y 
presumed to explain the associations between observed 
indicators of them, designated by squares. Variance 
in each indicator is attributable to two unobserved 
sources: one of the latent variables of interest, X or Y, 
and uniqueness, or specificity, designated by the small 
circles. The straight lines indicate directional effects, 
and the sharply curved lines indicate variances. The 
asterisks designate parameters to be estimated. These 
include factor loadings, uniquenesses, a regression co-
efficient, a disturbance (regression error of prediction), 
and the variance of X. This approach to depicting a 
model is called a “path diagram” (see Pek, Davisson, 

& Hoyle, Chapter 4). Importantly, although a model of 
this form is prototypical, it is but one of multiple ways 
latent variables and their interrelations can be modeled.

In many applications of SEM, the observed variables 
are assumed to be measured on a continuous scale, and 
any latent variables are assumed to be continuous as 
well. Yet variables often are measured coarsely (e.g., 
5- or 7-point response scales) and sometimes categori-
cally (e.g., yes–no), raising question as to the appropri-
ateness of standard SEM approaches to estimation and 
testing. Fortunately, SEM accommodates data, models, 
estimators, and fit statistics for observed and latent cat-
egorical variables (Chen, Moustaki, & Zhang, Chapter 
8; Koziol, Chapter 15; West, Wu, McNeish, & Savord, 
Chapter 10).

Although typical applications of SEM focus on re-
lations between variables, in some cases, the hypoth-
esis of interest requires modeling patterns of means or 
means of latent variables. These applications require 
moving beyond pure covariance structure modeling to 
a consideration of models that include a mean structure. 
This addition allows for the expansion of models such 
as the one shown in Figure 1.1 to include intercepts in 
the measurement and structural equations and means of 
the latent variables. In longitudinal data, it also permits 
modeling of individual patterns of means over time 
and their variability in latent growth curves (Grimm & 
McArdle, Chapter 30). When these variables are exam-
ined in relation to latent variables that explain associa-
tions among sets of indicators (e.g., X and Y in Figure 
1.1), the model includes three components—measure-
ment and structural equations, which, together, consti-
tute the covariance structure, and the mean structure. 
The full generality and flexibility of SEM would be 
evident in a model that includes all three components 
and both continuous and categorical observed and la-
tent variables.

BASIC LOGIC AND APPLICATION

The chapters in Part I of this book cover foundational 
topics relevant for understanding and effectively using 
SEM. I offer an overview in this introductory chapter 
as context for the material covered in those chapters 
and the basic applications covered in the first few chap-
ters in Part II of the book.

A fundamental difference between SEM and more 
familiar statistical models such as ANOVA and mul-
tiple regression analysis is the target of parameter es-
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 FIGURE 1.1.  A prototypical model with measurement and 
structural components.
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timation. In typical applications of multiple regression 
analysis, for example, the regression coefficients are es-
timated using ordinary least squares (OLS). The coeffi-
cients define a regression line that minimizes the aver-
age squared distance between the case-level data points 
(the target) and the line. Residuals index the degree to 
which the estimated line misses each data point, that 
is, the degree of error in predicting the observed data 
points from those estimated by the model. The goal 
of estimation in SEM is the same—to find values of 
the parameters that best account for the observed data 
given a substantively interesting model. A major differ-
ence, however, is what constitutes the observed data, 
or target. In the prototypical application of SEM—for 
example, the model shown in Figure 1.1—the data are 
the variances of and covariances between the observed 
variables. The goal of estimation, typically by the 
maximum likelihood method, is to find values for the 
parameters that, given the model, maximize the likeli-
hood of the observed data. Stated differently, as with 
OLS regression, the goal is to minimize the difference 
between the observed and estimated data, but the ob-
served and estimated data in prototypic applications of 
SEM are variances and covariances. Thus, the residuals 
are the differences between the observed variances and 
covariances and those estimated by the model given the 
data (see Chen et al., Chapter 8, for detailed coverage of 
estimation in SEM).

Returning to the model depicted in Figure 1.1, the 
data are the seven variances of the observed variables 
plus the 21 covariances between them (easily calcu-
lated as p(p + 1)/2, where p is the number of observed 
variables). As with the case-level observed data in OLS 
regression, the degrees of freedom available for model 
testing are derived from the number of data points—28 
in this case. This number is the same regardless of 
sample size. As with tests involving case-level data, 
the number of degrees of freedom for a given test is 
the number of available degrees of freedom, 28 in this 
instance, minus the number of parameters to be esti-
mated. Referring again to Figure 1.1 and counting as-
terisks, there are 15 parameters to be estimated, leaving 
13 degrees of freedom for tests of model fit. A model 
that fits the data well implies covariances that are close 
in magnitude to the observed covariances (the implied 
and observed variances will be the same, as all vari-
ance in observed variables is fully accounted for in the 
model).

Models such as the one shown in Figure 1.1 are speci-
fied by researchers; that is, there is no default model for 

covariance matrices based on seven observed variables. 
A given specification offers a putative explanation for 
the pattern of observed covariances and reflects the re-
searcher’s hypotheses about those relations; it also re-
flects certain technical constraints necessary to ensure 
the model can be estimated. When the parameters in 
a model are estimated from data, they can be used in 
combination with the data to produce an estimated, or 
implied, covariance matrix equivalent to fitted values 
on the outcome variable in OLS regression. The dif-
ference between the implied and observed matrices is 
the residual matrix, which is implicated directly or in-
directly in various tests and indices of fit. Generally 
speaking, a model fits the data when the elements of 
the residual matrix are uniformly near zero. Models 
initially specified by researchers often result in one or 
more residual covariances that differ from zero, mean-
ing they are not adequately explained by the model 
given the data. In such cases, models often are respeci-
fied, estimated, and tested, the equivalent of post hoc 
comparisons in ANOVA. When support is obtained for 
either an a priori or respecified model, it is compared 
against plausible alternative models, interpreted, and 
presented. Each of these steps in the basic application 
of SEM are discussed and illustrated in Part I of the 
book; considerations specific to particular models are 
presented in Parts II and III. In the next section of the 
chapter, I present a framework that integrates the gen-
eral steps involved in the implementation of SEM.

SEM IMPLEMENTATION FRAMEWORK

Despite its flexibility and generality, in practice, SEM 
is nearly always implemented following a series of dis-
crete steps. In this section, I present an SEM implemen-
tation framework that positions these steps in relation 
to each other, providing context for the foundational 
topics and applications presented in the remainder of 
the book. For each step I provide an overview and refer 
to the relevant chapters. The framework, shown in dia-
gram form in Figure 1.2, comprises four steps—speci-
fication, estimation, evaluation of fit, and interpretation 
and reporting—that are always followed. Because they 
are important considerations for how the steps are im-
plemented, I also include the related concerns of data 
acquisition/preparation, identification, respecification, 
and model selection; these are shown in Figure 1.2 as 
boxes connected by dashed lines to one or more of the 
primary steps in implementation.
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1. Structural Equation Modeling  7

SEM can be used with different intents, and it is 
useful to review them here as context for the presenta-
tion of the implementation framework. Specifically, 
Jöreskog (1993) described three common intents when 
using SEM. Although somewhat rare in practice, SEM 
can be used with strictly confirmatory intent. In such 
cases, a single a priori model is specified and evaluated. 
The model either provides an acceptable account of the 
data or it does not. No attempts are made at modify-
ing the model or comparing it with alternative models. 
Alternatively, the researcher’s intent may include both 
evaluating the fit of a model in an absolute sense and 
comparing it with alternative models that reflect com-
peting theoretical accounts or offer a more parsimonious 
account of the data. When SEM is used with the intent 
of comparing alternative models, these models should be 
specified a priori and, when possible, specified in such 
a way that direct statistical comparisons can be made. 
Finally, the intent of an SEM analysis might be the gen-
eration of a model for subsequent evaluation in a strictly 
confirmatory or alternative models analysis. Although 
an initial model must be specified, that model might 
originate from results of prior analyses (e.g., multiple re-
gression analysis, EFAs) or from SEM analyses of an a 
priori model that offers a sufficiently poor account of the 
data that it must either be modified or abandoned. Many 
uses of SEM begin with strictly confirmatory or alterna-
tive model comparison intent, but they become exercises 
in model generation when a priori models do not meet 
fit criteria. At the other extreme, it is possible to begin 
with a commitment to no particular model and use data 
mining strategies to generate models (see Brandmaier & 
Jacobucci, Chapter 39). With these distinctions in mind, 
I now turn to an overview of the implementation frame-
work displayed in Figure 1.2.

Specification

The typical use of SEM always begins with the speci-
fication of a model. A “model” is a formal statement 
of the mechanisms assumed to have given rise to the 
observed data. Those mechanisms reflect the substan-
tive hypotheses that motivated the analysis, as well as 
characteristics of the sample and research design. As 
discussed later in this section, the model also includes 
features that ensure that unique values can be obtained 
for the parameters to be estimated (see Pek et al., Chap-
ter 4, for detailed coverage of specification).

As shown in Figure 1.2, specification can take place 
either before or after data are acquired and prepared 
for analysis. The dashed line labeled a corresponds to 
the situation in which specification follows data col-
lection, whereas the line labeled b1 corresponds to the 
situation in which data collection follows specifica-
tion then, as indicated by line b2, directly precedes 
estimation. Again, using the model depicted in Figure 
1.1 as an example, a researcher might have access to 
a set of data that includes x1 to x4 and y1 to y3. These 
may be data the researcher collected but did not col-
lect with this specific model in mind, or data acquired 
from a secondary source (e.g., U.S. Census data). Note 
that in this situation the options for specification are 
constrained by the contents of a set of data that were 
not collected with the researcher’s model of inter-
est in mind. In such cases, multiple indicators might 
not be available, precluding the specification of latent 
variables, the spacing of longitudinal data might not 
be ideal for the mechanisms being modeled, or in any 
number of other ways the data might limit the research-
er’s ability to specify the model that ideally would be 
tested. For this reason, the preferred approach is the 

 FIGURE 1.2.  Steps in the implementation of SEM.
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8  I .  F o u n d a t I o n s

acquisition of data that allows for the estimation and 
testing of a model that comprises all that the researcher 
believes relevant to the process or structure of interest. 
Referring again to Figure 1.1, a model, when specified 
before the data are acquired, serves as a guide to data 
collection or the selection of a secondary data source. 
Only a data set that includes x1 to x4 and y1 to y3 would 
be suitable for the analysis.

The specific actions and concerns in specification 
are the same whether a model is specified before or 
after the acquisition and preparation of data. In terms 
of actions, specification involves designating the vari-
ables, relations among the variables, and the status of 
the parameters in a model. With regard to designating 
variables, the decisions are which observed variables to 
include and which latent variables, if any, to model (see 
Bollen & Hoyle, Chapter 5, for a detailed treatment of 
latent variables). Having decided which observed and 
latent variables to include in the model, the researcher 
must then decide which variables are related and, for 
those that are related, whether the relation is nondirec-
tional or directional. Finally, the status of parameters 
in a model must be specified. In general, a parameter 
can be specified as either fixed or free. Fixed param-
eters are those whose values are set by the researcher 
and, therefore, not estimated. For instance, in the model 
shown in Figure 1.1, the loading of x1 on X is fixed to 
1. Less apparent is the fact that the loadings of x1 to x4 
on Y and the loadings of y1 to y3 on X are fixed to 0; 
otherwise, the loadings are free parameters and will be 
estimated from the data (see Pek et al., Chapter 4, for 
additional detail on fixed and free parameters).

A specified model is expressed formally using a sys-
tem of notation in either a set of equations or a diagram. 
Historically, each computer program for conducting 
SEM analyses accepted only one means of depicting 
a model. For example, early versions of the LISREL 
program required specification using matrix notation 
(see Pek et al., Chapter 4). Early versions of the EQS 
program required equations and double-label nota-
tion. The first program designed specifically for use on 
desktop computers, Amos, accepted either line by line 
code or path diagrams constructed using the program’s 
built-in drawing capability. These and other programs 
such as Mplus and the lavaan package in R now allow 
for model specification using multiple means, as well 
as program-specific shorthand coding schemes. Model 
specification in Mplus and lavaan, the programs used 
for nearly all of the examples presented in this volume, 
is described and illustrated in Chapter 13 (Geiser).

A key concern in specification is identification (see 
Kenny & Milan, 2012, for a detailed treatment). Each 
parameter in a specified model must be identified and, 
if all parameters are identified, the model is said to be 
an identified model. A parameter is identified when it 
takes on a single value given the model and observed 
data. Parameters can be identified in two ways. The 
most straightforward and direct means of identifying a 
parameter is to fix its value. Because a fixed parameter 
can, by definition, assume no other value, it is identi-
fied. Free parameters are identified if there is but one 
estimated value for them that satisfies the estimation 
criterion and are obtained when the data are used to 
solve relevant structural and measurement equations. 
In some models, there is more than one way to obtain 
the estimate for a free parameter from these equations. 
As long as all such computations produce the same es-
timate, the parameter is overidentified. If a single value 
for a given parameter cannot be obtained through esti-
mation, the parameter is unidentified and, as a result, 
the model is unidentified. Although a few straightfor-
ward rules of thumb offer some assurance that a model 
is identified, the only way to ensure identification is 
to show mathematically that a single value can be ob-
tained for each parameter in all ways it might be ex-
pressed as a function of other parameters in the model. 
As illustrated in Figure 1.2, identification is linked to 
(re)specification by dotted lines. This designation is not 
to suggest that identification is optional. Rather, it indi-
cates that it is possible to specify and estimate a model 
without attending to identification. Ideally, prior to es-
timation, researchers would verify that all parameters 
are identified; however, some SEM software includes 
certain parameter specifications by default that ensure 
basic identification (e.g., a single loading on each latent 
variable to establish its metric). All SEM software pro-
duces error messages that signal identification issues, 
though those messages often do not point to the specific 
unidentified parameter or set of parameters. In such 
cases, the researcher is forced to attend to identifica-
tion. It bears noting that not all identification problems 
are related to specification. Parameter estimates near 
zero and highly correlated parameters can result in em-
pirical underidentification, which can only be detected 
by attempting estimation.

An additional concern related to specification is 
the statistical power of tests of model fit. The model 
that best reflects the researcher’s hypotheses about 
the mechanisms that gave rise to the data may be per-
fectly captured in the specification with all parameters 
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1. Structural Equation Modeling  9

identified, but the likelihood of finding support for the 
model or specific parameters in the model given the 
specification and data is too low to justify the analysis. 
The statistical power of SEM analyses is affected by 
multiple factors (e.g., degrees of freedom, sample size, 
correlations between parameters) that may vary from 
one fit index or statistical test to the next. The role of 
degrees of freedom—which derive, in part, from model 
specification—in the statistical power of SEM analyses 
argues for the consideration of statistical power as part 
of model specification. Detailed treatment of statisti-
cal power in the SEM context is provided by Feng and 
Hancock in Chapter 9.

Estimation

Once a model has been specified, its parameters identi-
fied, and the data prepared for analysis, the implemen-
tation moves to estimation. The goal of estimation is to 
find values for the free parameters that minimize the 
discrepancy between the observed covariance matrix 
and the implied covariance matrix given the model 
and the data. The means by which parameter estimates 
are derived depend on which of a number of possible 
estimation methods is used. Examples are maximum 
likelihood, unweighted least squares, generalized least 
squares, weighted least squares, and asymptotically 
distribution free estimators (see Chapter 8 by Chen 
et al., for detailed coverage of estimation and estima-
tion methods). By far the most commonly used method 
of estimation is maximum likelihood, the default in 
most SEM computer programs. Because the validity of 
model evaluation rests most fundamentally on the in-
tegrity of estimates, a critical concern for researchers is 
whether maximum likelihood estimation is appropriate 
given their data and model. If it is not, then a decision 
must be made as to which alternative estimator over-
comes the limitations of maximum likelihood without 
introducing additional concerns about the integrity of 
estimates. The key assumptions and how they are eval-
uated are discussed in Chapter 7 (Kline). The robust-
ness of different estimators to violations of assumptions 
often is determined by simulation studies, the logic and 
interpretation of which are covered in Chapter 6 (Leite, 
Bandalos, & Shen).

Most estimation methods, including maximum like-
lihood, are iterative. They begin with a set of start val-
ues for the free parameters. These values are, in effect, 
used along with the fixed parameter values to solve the 
equations that define the model and produce an implied 

covariance matrix. The degree of discrepancy between 
the observed and implied covariance matrices is re-
flected in the value of the fitting function, the computa-
tion of which varies from one estimator to the next. The 
goal of estimation is, through iterative updating of pa-
rameter estimates (beginning with the start values), to 
minimize the value of the fitting function, which takes 
on a value of zero when the observed and implied cova-
riance matrices are identical. Because the start values 
are not based on a consideration of the data given the 
model, the initial estimates typically result in substan-
tial discrepancy between the observed and implied co-
variance matrices reflected in a relatively large value 
of the fitting function. The first few iterations typically 
result in substantial reductions in the discrepancy be-
tween the two matrices and corresponding declines in 
the value of the fitting function. When the value of the 
fitting function cannot be minimized further through 
updates to the parameter estimates, the process is said 
to have converged on a solution. Often convergence 
is achieved in 10 or fewer iterations, though complex 
models or estimation situations in which start values 
are highly discrepant from the final estimates may re-
quire more. Unidentified models and models estimated 
from ill-conditioned data typically do not converge, re-
quiring the researcher to revisit the model specification 
or data evaluation and preparation. Although conver-
gence is necessary for evaluation of fit, the number of 
iterations required for convergence has no relevance for 
that evaluation.

Evaluation of Fit

Although a set of parameter estimates obtained from 
suitable data for an identified model are those estimates 
that minimize the discrepancy between the observed 
and implied covariance matrices, that discrepancy 
may be relatively large or small; that is, the fixed and 
estimated parameters may imply a covariance matrix 
that is sufficiently similar to the observed covariance 
matrix to support an inference that the model fits the 
data, or it may imply a covariance matrix in which one 
or more values are sufficiently discrepant from the ob-
served data that an inference of fit is not warranted. In 
an SEM analysis, the evaluation of fit concerns whether 
the specified model offers an acceptable account of the 
data or should be rejected (if the intent is strictly con-
firmatory) or respecified (if the original or reconsid-
ered intent is model generation). How this evaluation is 
done and a decision reached remains a topic of research 
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10  I .  F o u n d a t I o n s

and debate among methodologists (for a review and 
recommendations, see West et al., Chapter 10).

A useful starting point for considering how decisions 
about fit are made is a value based on the value of the 
fitting function and sample size, which is assumed to 
follow a central c2 distribution. In reality, the value typ-
ically labeled c2 is an approximation that, under condi-
tions typical of SEM analyses, is a poor approximation. 
Moreover, the statistical test, when it is legitimate, is of 
a hypothesis that few researchers would venture: that 
the specified model fully accounts for the observed 
data (i.e., there is no discrepancy between the observed 
and implied covariance matrices; see Preacher & Yare-
mych, Chapter 11, for discussion of the limited value of 
this hypothesis). Nonetheless, it is prototypical of good-
ness-of-fit tests, the goal of which is to inform infer-
ences about the correspondence between the observed 
data and the data implied by a model.

Relatively early in the history of SEM, the c2 good-
ness-of-fit test fell into disfavor as a test of the absolute 
fit of a specified model. The earliest alternatives were 
indices that reflected the improvement of a specified 
model over a model that assumed no relations between 
the variables (i.e., the independence, or null, model), 
with some taking into account model complexity. In 
some cases, these values were standardized so that their 
values ranged from 0 to 1, with higher values indicat-
ing greater improvement of the specified model over a 
model that offered no account of the relations between 
variables. A drawback to these comparative fit indices 
is that because they do not follow a known probability 
distribution, they cannot be used to construct formal 
statistical tests. As such, their use is governed by rules 
of thumb, typically involving the designation of a cri-
terion value that must be exceeded for a model to be 
considered acceptable (see West et al., Chapter 10, for 
a discussion of the challenges associated with setting 
criterion values for these indices).

Because of the critical importance of the decision to 
reject or accept and interpret a specified model and the 
absence of a number that can be used for unambiguous 
inferences for all data and modeling circumstances, the 
development of new fit statistics and indices continues. 
The most promising of these follow a known probabil-
ity distribution, focus on absolute rather than compara-
tive fit, evaluate the hypothesis of approximate rather 
than perfect fit, and account for the complexity of the 
model. In Chapter 10, West and colleagues review a 
wide range of fit statistics and indices and offer rec-
ommendations for using them to judge the adequacy of 

a specified model. For alternative model applications, 
Preacher and Yaremych (Chapter 11) discuss the use of 
fit information to select from among a set of alternative 
models.

Beyond the evaluation of overall model fit, and typi-
cally only when overall fit is deemed acceptable, are 
tests of the magnitude of the estimated parameters. 
These typically are tested for difference from zero 
using a test that is comparable to the test of coefficients 
in multiple regression analysis (i.e., estimate/standard 
error). Additional tests focused on parameters might 
consider whether two or more estimates are equivalent, 
as in evaluations of measurement invariance (see Gon-
zalez, Valente, Cheong, & MacKinnon, Chapter 22) or 
follow a pattern of theoretical interest as in latent curve 
analyses (see Grimm & McArdle, Chapter 30).

Respecification

As shown in Figure 1.2, the evaluation of fit may be 
followed by one of three next steps in the SEM imple-
mentation process. If the intent of the analysis is, to 
use Jöreskog’s (1993) descriptor, strictly confirmatory, 
then the next step is interpretation and reporting. If the 
evaluation of fit indicates that an a priori model does 
not offer an acceptable account of the data, the research 
may engage in model generation by respecifying the 
model to improve fit based on an examination of the 
residual matrix or software-supplied modification indi-
ces. If, rather than considering a single model, the re-
searcher wishes to consider several alternative models, 
then he or she must compare models in order to select 
the one to be interpreted and reported. The larger and 
more complex a specified model, the greater the like-
lihood of misspecification and, therefore, the greater 
the likelihood that respecification will be necessary to 
attain the values of fit indices generally required for 
interpretation and reporting.

Decisions about how a model might be respecified 
to improve its fit are based on specification searches, 
the goal of which is to find sources of misspecification 
among the fixed and free parameters in the initially 
specified model. Specification searches can be manual, 
which involves a visual inspection of the residual ma-
trix in search of subjectively large residuals, or auto-
mated, which involves the use of a statistical algorithm 
that evaluates the incremental improvement in fit if 
each fixed parameter is freed (e.g., Lagrange multiplier 
test) or free parameter is fixed (e.g., Wald test). Note 
that respecification requires a reconsideration of iden-
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tification then a return to estimation and evaluation of 
fit. Furthermore, in addition to concerns about whether, 
given sample sizes typical of research that uses SEM 
analyses, specification searches find modifications 
that would replicate in another sample from the same 
population (MacCallum, Roznowski, & Necowitz, 
1992) are concerns about the validity of critical values 
of indices and test statistics, which are not adjusted for 
the researcher degrees of freedom associated with re-
specification (Wicherts et al., 2016). Transparent and 
complete reporting of all analyses coupled with care-
ful interpretation of results is critical when the selected 
model was not among the models posited before analy-
ses began.

Model Selection

Only in the strictly confirmatory application of SEM is 
a single model evaluated, moving the implementation 
directly to interpretation and reporting. In typical ap-
plications, more than one model is evaluated either by 
design or out of necessity when a single model speci-
fied a priori is not consistent with the data. Multiple 
models put forward prior to analyzing the data may rep-
resent alternative theoretical accounts of the structure 
or mechanism under investigation or alternative models 
that differ primarily in terms of complexity. The mod-
els may be nested such that one is specified by fixing 
or freeing parameters in the other, or they may be non-
nested. In either case, the models can be compared for-
mally using various indices of fit and decision criteria 
(see Preacher & Yaremych, Chapter 11, for detailed 
coverage of model selection). Some alternative mod-
els of interest are equivalent; their estimation results 
in identical fit information (for a review, see Williams, 
2012). Because such models cannot be differentiated on 
statistical grounds, the choice of one of the alternatives 
requires conceptual justification based on deep under-
standing of the focal structure or mechanism.

The goal of model selection is to move to the final 
step of implementation with a single model that will 
be interpreted, then disseminated in a research report 
(see Figure 1.2). The need to move beyond evaluations 
of fit for several models to the selection of one model 
requires more than a superficial understanding of fit 
criteria and features of models that contribute to mis-
specification and unacceptable fit. Such considerations 
are particularly important when more than one can-
didate model meets fit criteria. In these cases, simple 
decision rules based on statistical criteria may not lead 

to the selection of the model that offers the best bal-
ance of parsimony, generalizability, and informative-
ness with respect to the structure or mechanism under 
investigation. The selection is particularly challenging 
for competing but equivalent models, for which the use 
of statistical criteria is not an option. In all instances 
of model comparison and selection, considerations 
beyond those related to the concepts and relations be-
tween them such as research design and sample size are 
relevant. In short, model selection may require a con-
sideration of statistical, design, and conceptual infor-
mation in order to select from among a set of alternative 
models given a set of data.

Interpretation and Reporting

When a model has been selected, attention turns to 
the final step in the implementation framework. Given 
the technical challenges associated with specifica-
tion, estimation, and evaluation of fit (including model 
comparisons), it is perhaps surprising that many of the 
criticisms leveled at SEM have focused on the inter-
pretation and reporting of results. For that reason, the 
researcher who uses SEM must take special care at this 
final stage of the SEM implementation process.

With respect to interpretation, the primary concerns 
are the basis for the model, the meaning of particular 
parameters in the model, and the degree to which the 
model is unique in accounting for the observed data. 
Generally speaking, the basis for the model can either 
be a priori, as in models that reflect theoretical accounts 
or form a set of interrelated hypotheses that perhaps 
derive from multiple theories, or post hoc, as in mod-
els that include modifications to the initially specified 
model or have their basis in exploratory analyses of the 
same data to which they were fit. The former affords 
more confident inferences and allows for more straight-
forward interpretation based primarily on the concepts 
and their interrelations. The latter requires qualifying 
with reference to the means by which the model was 
derived or modified.

A second interpretational issue concerns the mean-
ing of certain parameters in the model. Specifically, I 
refer to parameters associated with directional paths 
and the degree to which they can be interpreted as re-
flecting causal effects. In this regard, the prevailing 
wisdom among methodologists has moved from a will-
ingness to view tests of parameters as tests of causal ef-
fects in the 1960s and 1970s to an increasing reluctance 
to interpret parameters in this way beginning in the 
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1980s and continuing into the early 2000s. As detailed 
in Chapter 3 (Pearl), there is evidence of a move away 
from such conservative interpretation of directional ef-
fects to a view that, when properly justified, parameters 
can be interpreted as tests of causal effects even when 
the design is cross-sectional and the data are correla-
tional.

Finally, an issue that has received too little atten-
tion from researchers who use SEM, despite repeated 
expressions of concern by methodologists (e.g., Breck-
ler, 1990; MacCallum, Wegener, Uchino, & Fabrigar, 
1993), is the degree to which the model accepted by 
the researcher is the only model that offers an accept-
able account of the data. As discussed in the previous 
section, this may include nested or non-nested models 
that meet fit criteria or equivalent models, for which 
values of fit indices are identical. With respect to 
equivalent models, a particular concern is models that 
include paths that directly contradict those in the pre-
ferred model (see Pek & Hoyle, 2016, for discussion of 
the problem of equivalent models for tests of media-
tion in cross-sectional data). The degree to which the 
researcher can successfully manage these interpreta-
tional concerns influences the credibility, impact, and 
reproducibility of their application of SEM.

Beyond these interpretational concerns is a more 
mundane set of concerns that focus on what is to be 
included in research reports describing SEM analy-
ses and results. Given the flexibility of SEM and the 
multiple approaches to estimation and evaluation of fit, 
the research report must include information that gen-
erally is not expected in reports of ANOVA, multiple 
regression, or factor analysis. At the most basic level, 
the reader needs full information regarding the model 
specification, including the full array of fixed and free 
parameters and an accounting for degrees of freedom. 
Additional information includes the estimation method 
used and the outcome of evaluating its assumptions, the 
information to be consulted in order to evaluate fit, and 
the specific criteria that will distinguish a model that 
offers an acceptable account of the data from one that 
does not. Information about missing data, if any, and 
how it was managed in the analysis is important, partic-
ularly given the fact that some approaches to managing 
missing data affect model specification (e.g., inclusion 
of auxiliary variables; see Enders, Chapter 12, for in-
formation about methods for addressing missing data in 
SEM analyses). Once this background information has 
been provided, the researcher must decide what statis-
tical information from an SEM analysis to report and 

how to report it. Best practices in reporting SEM results 
are outlined and illustrated in a number of published pa-
pers (e.g., Hoyle & Isherwood, 2013;  McDonald & Ho, 
2002; Raykov, Tomer, & Nesselroade, 1991;  Schreiber, 
Stage, King, Nora, & Barlow, 2006).

This general framework captures the primary steps 
in any implementation of SEM, regardless of the type 
of model or data under study. In the final major section 
of the chapter, I describe the various types of models 
and the types of data for which they would be appropri-
ate. Instances of each type are discussed in detail and 
illustrated in Parts II and III of this book.

TYPES OF MODELS

A covariance matrix to be modeled using SEM, espe-
cially a large matrix, affords a wide array of modeling 
possibilities, constrained only by features of the sam-
pling strategy, the research design, and the hypotheses 
or patterns the researcher is willing to entertain. In fact, 
an infinite number of models is possible with even a 
few observed variables (e.g., Raykov & Marcoulides, 
2001). Of course, not all models that might be specified 
and estimated are plausible or interesting. The point 
is that SEM allows for the specification and testing of 
a wide array of models using a single comprehensive 
and integrative statistical approach. In the remainder 
of this section, I describe a sample of the models for 
which SEM is well suited; references are provided to 
relevant chapters in the book. Although these models 
do not sort cleanly into a small number of categories, 
for efficiency, I present them in relatively homogeneous 
groups based on the type of data and hypotheses for 
which they are appropriate.

Models Primarily Focused on Latent Structure

The variables implicated in many research questions 
cannot be directly observed in pure form, if at all. 
Rather, they must be inferred from fallible indicators, 
such as administrative records, observer ratings, self-
reports, or the status of some biological characteristic, 
such as heart rate or changes in blood volume in select-
ed regions of the brain. A means of separating variance 
in these indicators attributable to the variable of interest 
from variance attributable to other factors is to gather 
data on multiple indicators that share in common only 
their reflection of the unobserved variable of interest. 
This latent variable is assumed to be a relatively pure 
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reflection of the variable of interest, free of the error 
and idiosyncrasies of the individual indicators (though 
not free of other sources of variance common to all in-
dicators; see Bollen & Hoyle, Chapter 5, for further de-
tails and discussion of other types of latent variables). 
This notion of “common variance as latent variable” 
is familiar to many researchers as the basic premise of 
EFA. In the SEM context, it is the basic logic and build-
ing block for a large number of models.

The most straightforward model concerned primar-
ily with the latent structure of a set of indicators in the 
first-order factor model with reflective indicators. The 
two factors in the model depicted in Figure 1.1 are first-
order factors assumed to account for the covariances 
among the seven indicators. Unlike in EFA, indica-
tors typically are assigned a priori to factors and, in 
many cases, each indicator is assumed to reflect only 
one factor (but see Morin, Chapter 27, on measurement 
models in exploratory SEM). This prototypical model 
can be used to test a wide array of hypotheses, such as 
whether the factors are correlated and, if so, whether 
they are distinguishable; whether each item is, in fact, a 
reflection of only one factor; whether the loadings are 
equal; and whether subsets of the uniquenesses are cor-
related. The basic first-order model and extension of 
it are discussed in Chapter 14 (Brown). Considerations 
with respect to the number of indicators per factor and 
methods for reducing that number when it is large (e.g., 
a questionnaire with many items) are covered in Chap-
ter 28 (Marcoulides, Yuan, & Deng) and Chapter 16 
(Sterba & Rights), respectively.

If the model includes enough first-order factors, the 
researcher might choose to explore the latent structure 
of the first-order factors. In the same way that the com-
mon variance among indicators can be attributed to a 
smaller number of latent variables, it is possible that 
the common variance among first-order factors can be 
attributed to a smaller number of second-order factors. 
The classic example is Thurstone’s use of EFA to argue 
for the presence of seven primary (i.e., first-order) 
mental abilities but later to concede that a single (i.e., 
second-order) unobserved thread, presumably general 
intelligence, ran through them (Ruzgis, 1994). With 
enough first-order factors, it is possible to have multiple 
second-order factors.

Another class of models concerned primarily with 
the latent structure of a set of indicators comprises mod-
els with subfactors, which are additional first-order fac-
tors that explain commonality in subsets of indicators 
that may span one or more broader first-order factors 

of interest (e.g., Hoyle & Lennox, 1991; Reise, Man-
solf, & Haviland, Chapter 18). In such models, some or 
all indicators are directly influenced by two first-order 
factors. For example, returning to Figure 1.1, imagine 
that x2, x4, and y2 were negatively worded and for that 
reason shared a source of variance not captured by X 
and Y. In order to account for this common variance, a 
subfactor, Z, could be specified that influences x2, x4, 
and y2 despite the fact that they span X and Y. The in-
clusion of subfactors can be used strategically to tease 
apart trait and method variance, as in multitrait–multi-
method models (Eid, Koch, & Geiser, Chapter 19), or 
trait and state variance, as in trait–state models (Cole 
& Liu, Chapter 33). These models, as well as first- and 
higher-order models, can be estimated for indicators 
that are continuous or categorical. The specific con-
cerns of measurement models that include categorical 
indicators are discussed in Chapter 15 (Koziol).

Regardless of the specific model of latent structure, 
the question of whether a single model applies to all 
members of a given population may be of interest. (The 
same question may be asked of any model, regardless 
of type.) There are two approaches to studying model 
equivalence. When the subpopulations for which the 
model is to be compared can be distinguished by an ob-
served variable (e.g., gender, ethnicity), then multigroup 
modeling may be used (Sörbom, 1974). In multigroup 
modeling, a model is estimated separately for differ-
ent groups subject to constraints placed on individual 
parameters or groups of parameters. For instance, the 
loadings in a factor model might be constrained to be 
equal across groups and compared to a model in which 
they are free to vary as a means of evaluating the equiv-
alence of the loadings. This approach is described and 
illustrated by Widaman and Olivera-Aguilar (Chapter 
20). It is also possible that a given model does not de-
scribe the data for all members of the population but the 
variable that defines homogeneous subgroups in terms 
of parameter values is not observed. In such cases, fac-
tor mixture modeling can be used to estimate a categor-
ical latent variable that indexes subgroup membership 
(Lubke & Muthén, 2005; for general coverage of mix-
ture models, see Steinley, Chapter 29).

Models Primarily Focused 
on Directional Effects

A second type of model is concerned primarily with 
the estimation of the directional relations between 
variables, which may be latent or observed. The most 
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basic model of this type is equivalent to the multiple 
regression model, in which the relations between a 
set of potentially correlated predictor variables and a 
single outcome are estimated. In this simplest struc-
tural model, all variables are observed and there are no 
directional relations between the predictor variables. 
SEM extends this basic model in three primary ways: 
(1) Any of the variables may be observed or latent (with 
the use of factor scores in SEM as presented in Chapter 
17, by Devlieger & Rosseel, offering a hybrid option), 
(2) there may be multiple outcomes among which there 
are directional relations, and (3) there may be direc-
tional relations between predictors. The first extension 
is illustrated in our example model, in which latent 
variable X predicts latent variable Y. The second and 
third extensions are somewhat redundant as instances 
of models in which variables are both predictor and 
outcome. In fact, it is possible to have a model in which 
one of many variables is only a predictor and all other 
variables serve as predictors with reference to some 
variables in the model and outcomes with reference to 
others. Additional coverage of the distinction between 
predictor-only and predictor-and-outcome or outcome-
only variables—exogenous and endogenous variables, 
respectively—is provided in Chapter 4 (Pek et al.).

This distinction is evident in a relatively straightfor-
ward but highly useful model: the model that includes 
an indirect, or mediated, effect. Imagine that we add a 
variable, Z, to the model depicted in Figure 1.1. This 
variable is presumed to mediate the effect of X on Y. 
To evaluate this hypothesis, Z is positioned between 
X and Y with a directional path running from X to it 
and from it to Y. Thus, Z is both an outcome and a 
predictor. This particular model, the topic of Chapter 
22 (Gonzalez et al.), has received considerable atten-
tion from methodologists and is widely used in some 
research literatures.

Discussions of statistical mediation often compare 
and contrast it with statistical moderation—the quali-
fication of a direct effect by another variable. Modera-
tion is tested by interaction or product terms, which 
are routinely included in ANOVAs, less frequently 
considered in multiple regression analyses, and rarely 
included in models analyzed using SEM. In part, the 
relative neglect of interaction terms in SEM analyses 
may be attributed to the complexity of specifying in-
teractions involving latent variables. Recent develop-
ments in modeling latent interactions have resulted in 
approaches that significantly reduce the complexity 
of specification and estimation while expanding the 

forms of interaction effects that can be modeled. These 
strategies are reviewed and demonstrated in Chapter 23 
(Kelava & Brandt). The inclusion of dynamic modera-
tion effects in longitudinal models is covered in Chap-
ter 24 (Zyphur & Ozkok). Interaction effects receive 
additional coverage in Chapter 37 (Harring & Zou) as 
an instance of nonlinear effects.

A particularly useful class of models focused on 
directional relations is for data on the same sample 
at multiple points in time. These models can be dis-
tinguished in terms of the intensity of assessment or 
observation. Traditional longitudinal models involve 
the collection of data at relatively few points in time 
(typically two to four) at relatively long time intervals 
(typically 1–6 months). Intensive longitudinal models 
involve the collection of data at many time points at 
short time intervals (occasionally even in a continuous 
stream). The prototypical model for traditional longi-
tudinal data is the autoregressive model, in which each 
variable is included in the model at each point in time. 
This permits estimation of the effect of one variable 
on another from one wave to the next while controlling 
for stability of the variables from wave to wave (basic 
coverage is provided in Zyphur & Ozkok, Chapter 24). 
When the data collection is more intensive, as in the 
case of many observations over a short period of time, 
SEM can be used to model dynamic and patterned 
change as it is observed taking place. Dynamic SEM 
and continuous-time modeling are covered in Chapter 
31 (Hamaker, Asparouhov, & Muthén) and Chapter 32 
(Chow, Losardo, Park, & Molenaar), respectively. In 
Chapter 34, Chen, Song, and Ferrer show how models 
of dynamic change are extended to the dyadic case.

These longitudinally intensive data, as well as data 
appropriate for a subset of models described in the next 
section, are clustered; that is, the individual observa-
tions of each individual are almost certainly more re-
lated to each other than they are to the individual ob-
servations of other individuals in the data set. The same 
concern applies when each individual observation ap-
plies to a different individual, but subsets of individuals 
share an experience (e.g., treatment by one of several 
health care professionals) or place in an organization 
(e.g., one of several classrooms or schools) that is not 
shared by all individuals in the sample. SEM permits 
modeling of such clustering while retaining all of the 
flexibility in modeling described in this section of the 
chapter. Chapter 26 (Heck & Reid) describes and illus-
trates the specification, estimation, and testing of these 
multilevel models using SEM methods.
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Models that Include Means

The goal of most models estimated using SEM, includ-
ing all those described to this point, is to account for 
covariances between variables. An additional model 
type, which may be integrated with the models re-
viewed thus far, focuses on estimating the pattern of 
observed means or estimating latent means. These 
models require as input an augmented matrix either 
derived from raw data or produced by adding a line 
for means to an observed variance–covariance matrix. 
Models fit to such matrices add intercepts to the mea-
surement and structural equations, which allows for 
the modeling and comparison of means of latent vari-
ables, as well as attempts to account for, and perhaps 
predict, the pattern of means between groups or over 
time. The additional considerations raised by the inclu-
sion of means and hypotheses involving means that can 
be evaluated using SEM are covered by Thompson and 
colleagues (Chapter 21).

Particularly useful is a set of models that are longi-
tudinal, multilevel, and focused on modeling means—
latent growth models. These models express as latent 
variables the variability between individuals in the 
pattern of means over time. For instance, bonding to 
school might be assessed annually on four occasions 
beginning with the first year of middle school. These 
assessments are clustered within individual; thus, the 
model is multilevel. With four time points, both lin-
ear and quadratic patterns could be modeled, yielding 
three latent growth factors reflecting variances in in-
tercepts and linear and quadratic slopes. In multilevel 
terms, these factors are Level 2 variables that can be 
related to other Level 2 (i.e., individual level) latent and 
observed variables as described in the earlier sections. 
The basics of this modeling approach and variations on 
it are described by Grimm and McArdle (Chapter 30).

To further extend a model that already leverages 
many of the capabilities SEM affords, a researcher 
might ask whether there is evidence in the data of dis-
tinct subsets of individuals who show evidence of a sim-
ilar pattern of bonding to school scores across the four 
time points. Although it is possible that the researcher 
has anticipated and measured the characteristic that 
defines these subsets, more often the heterogeneity in 
growth either is unexpected or, if expected, its source 
unknown. In such cases, growth mixture modeling 
can be used to model a categorical latent variable that 
defines subsets of individuals with similar patterns of 
bonding to school scores. This latent variable is not un-

like the latent variables discussed thus far, except that 
its interpretation is not as simple as inferring the source 
of commonality among its indicators. Rather, it can be 
correlated with or predicted by other variables, latent or 
observed, to examine potential explanations for mem-
bership in these emergent groups defined by different 
patterns of bonding to school. Growth mixture model-
ing combines features of mixture modeling (Steinley 
et al., Chapter 29), latent growth modeling (Grimm & 
McArdle, Chapter 30), and latent class analysis (Lanza 
& Rhoades, 2013) to model common patterns of change 
attributable to unobserved sources of between-group 
differences. These models can be expanded to include 
predictors of membership in the emergent classes or 
compare classes on other observed or latent variables.

These different model types can be adapted to a wide 
array of data and analytic situations. For instance, SEM 
is increasingly used to model genetic data (Bruins, 
Franić, Dolan, Borsboom, & Boomsma, Chapter 35). 
A relatively new application is for modeling meta-an-
alytic data (Cheung, Chapter 36). And, across an array 
of data types, SEM has proven useful as an integrative 
approach to measurement scale development and vali-
dation (Raykov, Chapter 25). Across all these data and 
model types, parameters can be estimated and models 
selected using Bayesian methods, which are now avail-
able in widely used SEM computer programs. An in-
troduction and demonstration of the Bayesian approach 
to SEM analyses is provided by Depaoli, Kaplan, and 
Winter (Chapter 38).

CONCLUSION

SEM is a comprehensive and flexible approach to mod-
eling patterns and mechanisms of theoretical interest 
in a wide array of data types. Historically used primar-
ily to model covariances between variables measured 
on continuous scales, the capabilities of SEM have 
expanded dramatically to allow for modeling of many 
data types using an array of estimation methods and to 
accommodate means, patterns of means, latent interac-
tion terms, nonlinear relations, categorical latent vari-
ables, clustered data, and models tailored to the needs 
of researchers working with complex data historically 
not analyzed using sophisticated multivariate methods. 
Though SEM is not necessary, or even desirable, for 
every hypothesis test or modeling need, it is unrivaled 
in its capacity to fulfill many varied multivariate hy-
potheses and model types. How this capacity is har-
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nessed and used to full advantage is the topic of the 38 
chapters that follow.
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