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Overview, Goals of Longitudinal
Research, and Historical Developments

OVERVIEW

This book is written with the intent to lead readers.from the basics of growth modeling
to several advanced topics including growth mixture models, nonlinear change models,
growth models for non-normal outcomes; growth models of latent variables, and the
recent advances in latent change score modeling. In its entirety, the book is meant to sup-
port graduate courses on longitudinal data analysis and latent growth modeling in the
social, educational, and behavioral.sciences, or researchers interested in incorporating
these methods into their research programs.

The 18 chapters are organized into five parts. In the first part, Introduction and Orga-
nization, we review the goals of longitudinal research and some practical preliminary
steps that should be taken prior to examining change (descriptive statistics and plotting
of longitudinal data). In the second part, The Linear Growth Model and Its Extensions, we
introduce the linear\growth model and several ways to expand the model to examine
between-person differences in linear change and study multivariate change. Specifically,
we cover different ways to handle time, the inclusion of time-invariant covariates as pre-
dictors.of the growth factors (intercept and slope), multiple-group growth models, growth
mixture-models, and multivariate growth models. Several advanced topics are introduced
in this part but are presented in the context of the linear growth model. The third part,
Nonlinearity in Growth Modeling, proceeds through an array of nonlinear models—growth
models that are nonlinear with respect to time, growth models that are nonlinear with
respect to parameters, and growth models that are nonlinear with respect to random coef-
ficients (latent variables). The stepwise presentation is organized to facilitate adoption
of increasingly complex models. The fourth part, Modeling Change with Latent Entities,
addresses the application of growth models that are fit directly to binary (dichotomous)
and ordered polytomous outcomes, and latent variables that are indicated by multiple
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continuous and ordinal variables. The fifth and final part, Latent Change Scores as a Frame-
work for Studying Change, introduces a process-oriented version of the growth model. We
discuss univariate and bivariate models, and then describe recent advancements in how
these models can be used to study individual rates of change in nonlinear growth models.

With intent to facilitate practical application of growth models to longitudinal data,
all of the models are introduced with detailed presentation of real-data examples, code for
fitting the models to the example data using multiple statistical packages, discussion of the
output from those programs, and interpretation of the modeling results. Remaining agnostic
to the modeling framework, we introduce each topic through the multilevel and structural
equation modeling frameworks. Within the multilevel modeling framework we. provide
code for PROC NLMIXED in SAS (Littell, Milliken, Stroup, Wolfinger, & Schabenberger,
2006) and the nlme package (Pinheiro, Bates, DebRoy, Sarkar, & R Development Core
Team, 2013) in R. Within the structural equation modeling framework we provide code
forMpIlus (Muthén & Muthén, 1998-2012) and the OpenMx package (Boker et al., 2011)
in R. In each framework, we have purposively paired a popularproprietary program (SAS
and Mplus) with a freely available R package (n1me and OpenMx) so that all readers will
be able to work through the examples in at least two programs.*Of practical note, we have
utilized the nonlinear mixed-effects modeling programs (NLMIXED and nlme) instead of
their associated linear mixed-effects modeling programs (MIXED and 1me) because the
nonlinear programs are more flexible and therefore’can be used to fit more of the models
we present. Additionally, the programming.of these procedures closely follow the mathe-
matical presentations of the models, which we feel aids understanding. Finally, we provide
code for the linear mixed-effects modéling programs on our website.

FIVE RATIONALES FOR LONGITUDINAL RESEARCH

In working through the chapters, it may be useful to keep in mind specific research ques-
tions and how thelongitudinal data being analyzed help to propel those questions. In the
dialectic surrounding lifespan development in the 1970s, Baltes and Nesselroade (1979)
outlined five main_rationales for conducting longitudinal research. At the time, these
rationales described opportunities that longitudinal research designs afforded and laid
the groundwork and impetus for the development of new methods to analyze longitudi-
nal-data. Growth models can be viewed, in part, as an answer to the call—these methods
provided a statistically rigorous framework that enabled researchers to take advantage
of the opportunities brought about by the collection of longitudinal data (see McArdle
& Nesselroade, 2014). In the chapters that follow we often refer back to Baltes and
Nesselroade’s five rationales, and thus present them here, at the outset, as an overarching
framework within which to consider one’s research goals.

* Rationale 1. The first rationale and primary reason for conducting longitudinal
research is the direct identification of intraindividual change (and stability). Measuring the
same individual (entity) repeatedly allows researchers to identify if and how specific
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attributes of the individual changed (or remained the same) over time. Developmental
(and other) theories of change often conceptualize and describe change as either an incre-
mental or a transformational process (see Ram & Grimm, 2015). Incremental change is
observed and identified as change in the magnitude (quantitative) of the same construct
along a continuum over a specific time interval. Transformational change is observed and
identified as a change or transition between discrete states during a specific time interval
(e.g., Piagets stage theory of development; Piaget, 1952). Analytically, the main goal is
to obtain a parsimonious and accurate description of how and when attributes of the
individual change over time. Importantly, Baltes and Nesselroade noted that stability-and
constancy over time are special cases of intraindividual change. As we shall see in.the'rest
of the book, growth models are designed specifically to articulate a wide variety-of pos-
sible (linear and nonlinear) patterns of intraindividual change.

* Rationale 2. Once the pattern of intraindividual (within-person) change is identi-
fied (in terms of magnitude or sequential steps), a logical next question to ask is whether
different individuals change in different ways. Thus, the second rationale for longitudinal
research is the direct identification of interindividual differences, (or similarity) in intrain-
dividual change. This rationale invokes research questions like Do different individuals
change different amounts or in different directions?, orDo‘different individuals transition
from one stage to another at different times? Baltes.and Nesselroade (1979) suggested
that heterogeneity in change is the norm given the “existence of diversity, multidirec-
tionality, and large interindividual differences in developmental outcomes” (p. 24). As
discussed in Chapters 3, 5, 6, and 7, growth models are structured specifically to describe
interindividual differences in intraindividual change.

* Rationale 3. Acknowledging that change rarely occurs in isolation, the third ratio-
nale for longitudinal research is/the analysis of interrelationships in behavioral change.
As Baltes and Nesselroades (1979) note, “The examination of interrelationships in
change among distinct:behavioral classes is particularly important if a structural, holis-
tic approach to development is taken” (p. 25). This holistic approach centers on the
idea that changes in, multiple constructs are expected to occur simultaneously and/or
sequentially. Analytically, the task requires simultaneous analysis of multiple variables
and the eyaluation of how changes in one variable precede, covary, and/or follow changes
in another.variable. In Chapter 8 we discuss multivariate growth models and dynamic
predictors, and in Chapter 17 we cover how latent change score models may be used to
examine such interrelationships.

* Rationale 4. The fourth rationale, analysis of causes (determinants) of intraindivid-
ual change, centers on explaining or accounting for the observed within-person change
process. Specifically, the objective is to identify the time-varying factors and/or mechan-
sims that impact and/or drive the within-person changes identified in Rationale 1. Key
in our presentation is that changes are likely to proceed at different rates at different
periods of time. For example, when learning a new skill, intraindividual changes may
proceed quickly early on, but more slowly later as individuals reach asymptotic levels of
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performance. In Chapter 8 we cover how time-varying predictors can be introduced into
the growth model, and later in Part I1I (Chapters 9 to 12), we address nonlinear models
for intraindividual change.

 Rationale 5. The fifth rationale for longitudinal research is the analysis of causes
(determinants) of interindividual differences in intraindividual change. Given that individu-
als differ in how they change over time (Rationale 2), researchers are often interested in
identifying the factors and/or mechanisms that can account for those between-person dif-
ferences. The objective is to identify the time-invariant variables that are related to specific
aspects of within-person change. For example, demographic/background characteristics,
experimental manipulations (e.g., interventions), and characteristics of the individuals’
proximal and distal contexts may all influence how and when change proceeds. Research
questions proceeding from Rationale 5 are often examined through the inclusion of time-
invariant covariates (Chapter 5), the use of multiple-group growth models (Chapter 6),
and growth mixture models (Chapter 7).

Together, these five rationales for longitudinal research'provide the foundation for
building precise research questions that can be examined. using contemporary growth
models and the extensions covered in this book. As youwork through the chapters, we
encourage you to articulate how your research paradigms map on to these rationales.
What is your theory of intraindividual change? What is your theory of between-person
differences? and so on. You can then select specific models that are appropriate for those
questions, and you can thoughtfully consider if and how the data afford and/or limit your
ability to obtain accurate answers.

HISTORICAL DEVELOPMENT OF GROWTH MODELS

Before proceedingtothespecifics of contemporary growth models and their recent exten-
sions, we discuss the historical context in which growth models were developed. The
methods we use'toanalyze change emerged from almost a century’s worth of innovations.
This summary provides a brief and selective overview of the innovations that contributed
to the models presented throughout this book.

The beginning of growth modeling and the ideas underlying many of the methods
used today can be traced back to Wishart's (1938) critique of a study examining the
weight gain of three groups of bacon pigs that were on three different diets (Woodman,
Evans, Callow, & Wishart, 1936). Woodman et al. (1936) had calculated each pig’s over-
all weight gain as the difference between the pig’s weight at baseline and at week 16, and
used the resulting change scores as the dependent variable in an analysis of variance
to examine differences in weight gain in relation to diet type. The results were lacklus-
ter, with no significant differences in total weight gain between the three diet groups.
Discouraged, but persistent, the authors then conducted an analysis of covariance that
included baseline weight as a covariate. This analysis supported the initial hypothesis and
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provided evidence of a significant difference in weight gain between two of the three diet
groups. Wishart (1938) was concerned, not with the soundness of the statistical analysis,
which were indeed proper, but with the extent of unanalyzed data. The weights of the
pigs were recorded weekly. However, the analysis only used the measurements obtained
at baseline (week 0) and week 16. The original analysis used only those data that would
conform to a straightforward analysis of variance and covariance. That is, the research-
ers selected data that fit into a specific analytic technique, rather than utilizing all of the
data that were collected. Wishart (1938) thought that analyzing all 17 repeated observa-
tions would yield a more reliable and valid answer to the research question Do pigs’ diéts
impact their rates of growth? The predicament was that it was not yet clear how all the
repeated measures could be used to track the within-pig changes and the between-pig
differences in within-pig change.

In his critique, Wishart (1938) approximated the formal methods that would be
developed 50 years later. Following good practices, he first plotted the data—pigs’ weight
and the log transform of the pigs’ weight on the y-axis and time (weeks since the begin-
ning of the study from O through 16) on the x-axis. Then, examining these plots, he
sought to identify a mathematical function that would provide the best representation
of each pig’s growth trajectory. After considering a few-/options, Wishart decided on a
quadratic polynomial of the form y, = b, + b,- (t — 8) +b;-{(t - 8)* - 24} and estimated
the parameters of the quadratic curve (i.e., by, b,,and b;) that best described each pig’s
data. These included an intercept (centeredat week 8), a linear change component inter-
preted as “average growth rate in pounds per week,” and a quadratic change component
interpreted as “half the rate of change in the growth rate in pounds per week” (i.e., a
scaling of acceleration). Thus, Wishart reduced the dimensionality of the original data
(17 repeated measures) down.toithree specific aspects of growth that he thought had
substantive meaning and that, hopefully, sufficiently described the entirety of the growth
process. Wishart then used an analysis of variance to determine whether differences in
the pigs’ “average growth rate” (linear component) were related to diet. Wishart found
a significant difference between two of the three diets in the linear aspect of change. As
with the original-analysis, Wishart then conducted an analysis of covariance account-
ing for the pigs”initial weights (specifically, predicted initial weight from the individual
quadratic models). Replicating the original results, he found significant differences in
“average'growth rate” between two of the three diet groups. He then conducted similar
analyses for'the ‘rate of change in the growth rate’ (quadratic component). Wishart found
that the three diet groups differed significantly in how their rate of weight gain acceler-
ated over time.

Overall, Wishart’s results were more robust (results were stronger) when using all of
the longitudinal data, and he attempted to capture multiple aspects of the change process.
Wishart's point was that there was important information embedded in all of the repeated
measures and that information could be used to provide more accurate descriptions of
the within-pig change process and the between-pig differences in the within-pig change
process. The density of the repeated measures provided a more complex representation
of growth and a better understanding of the growth process.
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The general approach that Wishart used provides the foundation for understanding
the core aspects of contemporary growth models. Key aspects of Wishart's approach were
that (1) an individual’s observed change trajectory can be described by a mathematical
function of time, plus noise (error), (2) the parameters of the function represent specific,
meaningful aspects of the within-individual change process (Rationale 1), (3) variation
in those parameters constitutes information about between-individual differences in the
change process (Rationale 2), and (4) how the variation in the growth parameters can be
associated with other predictor variables or covariates provides information about exog-
enous (diet) and endogenous (initial weight) determinants of the between-indiyidual
differences in the within-individual change process (Rationale 5). The utility of Wishart’s
approach prevails today. Initial steps in the study of individual change often-include
plotting individual trajectories and fitting individual regressions to estimate individual
growth parameters (see Singer & Willett, 2003).

Twenty years after Wishart's analysis, Tucker (1958) and Rao (1958) presented work
that is often cited as the foundation of growth models within(the structural equation
modeling framework. Rao and Tucker each proposed an*approach wherein the sums
of squares and cross-products matrix obtained from repeated measures data were sub-
jected to a principal components analysis. The principal.<¢omponents model decomposed
the repeated measures data into a set of generalized learning curves, component load-
ings representing distinct patterns of change, and individual component weights (com-
ponent scores) indicating the degree to which an individual’s observed trajectory was
saturated by each of the generalized learning curves (components). The generalized learn-
ing curves were interpreted as the fandamental aspects of change that all individuals
shared (Rationale 1), and the individual component weights indicated how individual
trajectories were different from,one another (Rationale 2). Tucker (1966) subsequently
refined the techniques for determining the number of generalized learning curves (com-
ponents) to retain and described rotation procedures that would aid interpretation of
the learning curves. In the-same way that Wishart used a specific mathematical func-
tion (quadratic polynomial) to reduce the 17 repeated measurements of a pig’s weight
down to three meaningful parameters (intercept, rate of change, rate of acceleration) and
examined between-pig differences in those parameters, Tucker and Rao used principal
components analysis to reduce the dimensionality of the repeated measures data obtained
from multiple‘individuals down to a smaller number of learning curves and examined
between-person differences in the weighting of those curves/components. Key links to
the application of growth models fit in the structural equation modeling framework are
the use of a multivariate approach (i.e., factor-analytic) to reduce dimensionality, the way
component (factor) loadings represent the dominant change trajectories, and the use of
component (factor/latent variable) scores to provide information about between-person
differences in change (see Grimm, Steele, Ram, & Nesselroade, 2013).

Through the 1970s and into the early 1980s the individual growth modeling (from
Wishart) and generalized learning curve (from Tucker) approaches were used to examine
how individuals changed over time. Of course, estimation routines were updated along
the way, with the facility afforded by least squares, nonlinear least squares, and Bayesian
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approaches to estimating growth parameters (see Berkey, 1982; Box, 1950; Potthoff &
Roy, 1964; Rogosa, Brandt, & Zimowski, 1982). Then, Harville (1977) introduced a class
of linear mixed-effects models, and Laird and Ware (1982) developed more efficient
estimation techniques for those models (see also Rao, 1965), which provided the main
foundations that would support the fitting of growth models in the multilevel modeling
framework. Specifically, Laird and Ware (1982) proposed that two-stage models should
be used to study change. Using repeated measures of pulmonary function, they demon-
strated how the new, unified approach to estimation (simultaneous estimation of level-1
[within-person] and level-2 [between-person] model parameters) could be used”to
study between-person differences in within-person change (Rationale 2). Further, their
demonstration showed how exposure to air pollution had an effect on_the long-term
development of pulmonary function and highlighted how this framework.could handle
incomplete and highly unbalanced data—a common feature of longitudinal data. In the
years that followed, Rogosa and Willett (1985) and Bryk and Raudenbush (1987) refined
how the mixed-effects framework could be used to study individual change. These works
highlighted common misconceptions regarding the study ‘of.change, demystified how
the models articulated theory about individuals’ initial state and rates of change (and the
assumptions therein), and outlined a variety of change trajectories, linear and nonlinear,
that could be examined using the mixed-effects modeling framework. Their presenta-
tions of accessible examples prompted many psychologists and educational researchers
to adopt these techniques and made them a«central part of the statistical toolbox used by
social scientists.

In parallel, Joreskog and Sorbom™(1979) developed the structural equation model-
ing framework and supplied the research community with accessible software that pro-
vided the facility for simultaneously modeling mean and covariance structures. Using
this framework and giving a nod to the approach introduced by Tucker (1958) and Rao
(1958), Meredith and Tisak (1984, 1990) provided a general framework for fitting latent
curve models in the struetural equation modeling framework. Specifically, they illus-
trated how the linear\growth model can be specified as a restricted confirmatory fac-
tor model with a‘mean structure, and discussed extensions to multiple-group growth
models, higher-order polynomial models, spline models, and a variety of models with
nonlinear change patterns. The flexibility of the structural equation modeling framework
immediately enabled researchers to extend Meredith and Tisak’s (1984, 1990) work. In
the~1980s, for example, McArdle (1986) combined additive genetic models and latent
growth models in the analysis of longitudinal data from twins to assess the additive
genetic (heritability), common environmental, and unique environmental components
of initial test performance, change in performance over time, and unique (individual)
variability. McArdle (1988) also extended the model into the multivariate space, propos-
ing several ways in which growth models could be used to study the development of two
or more processes as well as changes in latent variables. The first of these models was
the bivariate (or parallel process) growth model where the changes in two variables are
simultaneously examined and the associations between intercepts and slopes are evalu-
ated to study whether individual changes in one process are associated with individual
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changes in the second process. The second model was the curve of factors model or
second-order growth model (Hancock, Kuo, & Lawrence, 2001), where changes in a
multiply indicated latent variable were modeled. The third model was the factor of curves
model where the associations among growth factors (as in the bivariate growth model)
were modeled with second-order factors instead of covariance paths. The introduction
of these models spurred discussions of how to test whether the same construct was mea-
sured in the same scale over time (longitudinal measurement invariance) and how to
study the interplay between multiple developmental processes.

As the advances in computational power and efficiency increased, the possibilities
for estimating nonlinear mixed-effects models were greatly enhanced (see Davidian &
Giltinan, 1995; Pinheiro & Bates, 1995; Vonesh & Chinchilli, 1996). This allowed for
the examination of interindividual differences in a wider set of within-person change
models in the multilevel modeling framework. Work on this topic was conducted by
Lindstrom and Bates (1990), Burchinal and Appelbaum (1991), Beal and Sheiner (1992),
Vonesh (1992a, 1992b), Wolfinger (1993), Lin (Wolfinger &' Lin,1997), and Davidian
and Gallant (1993). In the structural equation modeling framework, work on this topic
was conducted by Browne and du Toit (1991; see also Brewne; 1993), who showed how
complex nonlinear mixed-effects models could be approximated through Taylor series
expansion following the work of Beal and Sheiner (1982). This opened new opportuni-
ties to merge the flexibility of the structural equation modeling framework (e.g., mea-
surement models) with the study of inherently. nonlinear trajectories (see Blozis, 2004;
Grimm, Ram, & Estabrook, 2010).

In the midst of these innovations, the growth modelers working in the multilevel
framework (also called mixed-effects or random coefficient models) and the growth mod-
elers working in the structuralequation modeling framework realized that the two frame-
works could be used to fit the same model and obtain identical results (see Willett &
Sayer, 1994). In this book-we present the multilevel and structural equation approaches
and note that the choice of modeling framework is mostly a matter of preference because
nearly all of the medels we present can be fit in both frameworks. However, certain mod-
els are easier to specify and estimate in one framework versus the other. For example, the
mixed-effects;modeling framework handles individually varying time scales and model-
ing of inherently nonlinear trajectories more easily than the structural equation modeling
framework, whereas the structural equation modeling framework provides more flexibil-
itydinto modeling residual structures, fitting multivariate change models, and incorporat-
ing multiply indicated latent variables (see Ghisletta & Lindenberger, 2003), although
these differences have been minimized over time (Grimm & Widaman, 2010; Kwok,
West, & Green, 2007; Sterba, 2014).

Around the turn of the century, there was an increased interest in considering quali-
tative differences in within-person change (e.g., Magnusson, 2003). Researchers needing
facility to group individuals based on their change patterns (e.g., early learners, late learn-
ers) introduced semiparametric group-based models, that represented between-person
differences in change as a collection of latent classes (Jones, Nagin, & Roeder, 2001;
Nagin, 1999), and growth mixture models that represented between-person differences
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in change as a combination of latent classes and continuous between-person differences
within each latent class. Despite some limitations and ambiguity in their use (Bauer &
Curran, 2003; Grimm, Ram, Shiyko, & Lo, 2013; Ram, Grimm, Gatzke-Kopp, & Molenaar,
2011), the popularity of these models has produced a great deal of knowledge about how
individuals differ in how they change and prompted a rich set of advanced modeling
possibilities (see Grimm & Ram, 2009; Grimm, Ram, & Estabrook, 2010; Li, Duncan,
Duncan, & Hops, 2001; Ram & Grimm, 2009).

In the 2000s there were also innovations in how growth models could be used to
simultaneously model individual changes and examine time-dependent lead-lag associa-
tions with longitudinal panel data. McArdle and Hamagami (2001) showed how latent
difference (change) variables could be specified through fixed structural paths'in the
structural equation modeling framework—an extension that allowed researchers to examine
the interplay between changes in two or more variables. At the same time; Curran and
Bollen (2001) highlighted how autoregressive and cross-lagged effects.could be included
directly in growth models specified in the structural equation modeling framework. These
efforts subsequently led to second-order difference models (Hamagami & McArdle, 2007)
to study acceleration and its determinants and latent differential models (Boker, Neale, &
Rausch, 2004), which treat time continuously instead of discretely, multiple-group and
growth mixture models to examine group differences in‘lead-lag associations (Ferrer et
al., 2007; Grimm, 2006), and the examination of between-person differences in the rate
of change in nonlinear models (Grimm, Castro-Schilo, & Davoudzadeh, 2013; Grimm,
Zhang, Hamagami, & Mazzocco, 2013). The latent change score framework allows for
the examination of all of Baltes and Nesselroade’s rationales for longitudinal research (see
McArdle, 2009; McArdle & Nesselroade, 2014).

MODELING FRAMEWORKS AND PROGRAMS

As mentioned, we diseuss both the structural equation modeling and multilevel model-
ing frameworks for'specifying and fitting growth models. The majority of growth models
can be specified in both frameworks (see Curran, 2003; Ghisletta & Lindenberger, 2003;
Willett & Sayer, 1994); however, certain models can only be specified in one framework
or the other because of program limitations. For example, inherently (fully) nonlinear
models can*only be directly fit within the (nonlinear) multilevel modeling framework,
and second-order growth models can only be fit within the structural equation modeling
framework. Furthermore, some models are more easily fit within a certain framework,
although these models can be fit in both frameworks. For example, fitting growth models
to data where individuals vary in their timing metric (individually varying time metrics)
are more easily fit in the multilevel modeling framework, even though such models can
be fit in the structural equation modeling framework (not necessarily with all structural
equation modeling programs). Similarly, growth models with mixture distribution and
growth models with different residual structures are more easily specified in the struc-
tural equation modeling framework even though certain multilevel modeling programs
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allow mixture distributions (e.g., PROC NLMIXED) and different residual structures (e.g.,
PROC MIXED; see Kwok, West, & Green, 2007). Thus, when moving into more advanced
models, experience working in both the multilevel and structural equation modeling
frameworks is beneficial.

As we noted, we discuss the programming of growth models using MpIus and
OpenMx in the structural equation modeling framework and using PROC NLMIXED and
nlme in the multilevel modeling framework. MpIlus is a comprehensive latent variable
modeling program (it can handle multilevel data, mixture distributions, and a variety of
non-normal data [e.g., binary, ordinal, categorical, count, zero-inflated]), has efficient
estimation routines (e.g., maximum likelihood, weighted least squares, Bayesian), a
straightforward programming language, and is continually being improved.(At.the time
of writing, Mplus is probably the most utilized structural equation modeling program.
The Mplus website (www.statmodel.com) contains a demonstration version of the pro-
gram that is only limited by the number of variables included in.the.analysis, the user
manual, a collection of examples, discussion forums, and a series of papers highlighting
new features of the program.

OpenMx can be seen as a recent update to Mx (Neale, Boker, Xie, & Maes, 2003), a
freely available stand-alone structural equation modeling program. However, OpenMx is
more of a transformation than an update because of the'magnitude of its capabilities and
how it is embedded within R, a freely available comprehensive statistical package. Thus,
OpenMx is a free comprehensive structural’equation modeling program that can handle
binary and ordinal outcomes and mixture distributions. There are a variety of ways to
specify models using OpenMx (path specification using RAM notation and matrix speci-
fication), but we note that regardless of the approach, the programming of OpenMx is
more intense than Mplus, and familiarity with the R statistical package is beneficial.
The OpenMx website (http://openmx.psyc.virginia.edu) contains program documentation,
programming examples,/awiki, and forums where questions can be posed to the devel-
opers. Finally, the OpenMx-development team is continuing to expand and improve its
capabilities.

PROC MIXED'and NLMIXED in SAS are two of the most popular procedures for
mixed-effects or, multilevel models. Singer (1998) provides an excellent overview of
PROC MIXED, which increased its use among educational and psychological research-
ers. NLMIXED'is a general modeling program that can handle multilevel data structures.
Because of its generality, NLMIXED is not as efficient as MIXED; however, NLMIXED can
handle inherently (fully) nonlinear models, non-normal outcomes (e.g., binary, ordinal,
count, zero-inflated), and mixture distributions—topics that are of interest here. Addi-
tionally, the programming of NLMIXED is straightforward, although some knowledge of
the SAS statistical language is beneficial.

The nlme package has been the primary mixed-effects modeling package available
through R and includes both a linear mixed-effects modeling procedure (1me) and a
nonlinear mixed-effects modeling procedure (nlme)—similar to MIXED and NLMIXED
in SAS. Throughout this book we discuss the nlme procedure (over the 1me procedure)
because of its ability to fit inherently (fully) nonlinear models. The 1me4 package (Bates,
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Machler, & Bolker, 2015; Bates, Machler, Bolker, & Walker, 2011) is a newer package for
fitting linear and nonlinear mixed-effects models (procedures include 1mer and nlmer)
in R and is able to fit mixed-effects models to non-normal outcomes (an advantage over

nlme); however, nlme is more flexible when it comes to fitting inherently nonlinear

models and its programming is more straightforward. For these reasons we focus on

nlme instead of 1me4; however, 1me4 syntax is available on our website, and Long’s
(2012) recent book of longitudinal data analysis discusses the use of 1me4.
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